

### Exercice 1.

1. On considère la suite arithmétique  $(u_n)$  de raison 3 et de premier terme  $u_0 = 2$ .

Calculer 
$$u_{20}$$
 et  $S_{20} = u_1 + u_2 + \cdots + u_{20}$ .

2. On considère la suite géométrique  $(v_n)$  de raison 2 et de premier terme  $v_1 = 0,01$ .

Calculer 
$$v_{20}$$
 et  $S_{20} = v_1 + v_2 + \cdots + v_{20}$ .

## Correction

1. On sait que la suite  $(u_n)$  est arithmétique de raison 3 et de premier terme  $u_0 = 2$ .

Alors pour 
$$n \ge 0$$
  $u_{n+1} = u_n + 3$ 

pour 
$$n \ge 0$$
  $u_n = u_0 + 3n = 2 + 3n$ 

Alors 
$$u_{10} = 2 + 3 \times 10 = 32$$

Et 
$$S_{10} = u_1 + u_2 + \dots + u_{10} = (nombre\ de\ terme) \times \frac{1er\ terme + dernier}{2}$$

$$S_{10} = 11 \times \frac{2+32}{2} = 11 \times 17 = 187$$

Donc 
$$u_{10} = 32$$
 et  $S_{10} = 187$ 

2. On sait que la suite  $(v_n)$  est géométrique de raison 2 et de premier terme  $v_1 = 0,01$ .

Alors pour 
$$n \ge 1$$
  $v_{n+1} = v_n \times 2$ 

pour 
$$n \ge 1$$
  $v_n = v_1 \times 2^{(n-1)} = 0,01 \times 2^{n-1}$ 

Alors 
$$v_{20} = 0.01 \times 2^{20-1} = 0.01 \times 2^{19} = 5242.88$$

Et 
$$S_{20} = v_1 + v_2 + \dots + v_{20} = 1$$
 er  $terme \times \frac{1 - raison^{nb \ determe}}{1 - raison} = 0.01 \times \frac{1 - 2^{20}}{1 - 2} = 10$  485,75

Donc 
$$v_{20} = 5242,88 \text{ et S}_{20} = 10485,75$$



## Exercice 2.

On considère la suite  $(u_n)$  définie sur  $\mathbb{N}$  par  $u_0 = 3$  et  $u_{n+1} = 2$   $u_n - 1$ .

- 1. Calculer les 5 premiers termes de la suite.
- 2. Démontrer par récurrence que pour tout entier naturel n,  $u_n = 2^{n+1} + 1$ .

## Correction

1. On a  $u_0 = 3$ 

Alors 
$$u_1 = 2$$
  $u_0 - 1 = 2 \times 3 - 1 = 5$   
 $u_2 = 2$   $u_1 - 1 = 2 \times 5 - 1 = 9$   
 $u_3 = 2$   $u_2 - 1 = 2 \times 9 - 1 = 17$   
 $u_4 = 2$   $u_3 - 1 = 2 \times 17 - 1 = 33$ 

2. On définit la propriété suivante : pour tout entier naturel n,  $P_n$  :  $u_n = 2^{n+1} + 1$ 

<u>Initialisation</u>: pour n=0, on a  $u_0=3$  et  $2^{0+1}+1=2+1=3$  donc la propriété  $P_0$  est vraie

<u>Hérédité</u>: soit un entier naturel k, on suppose que la propriété  $P_k$  est vraie (càd  $u_k = 2^{k+1} + 1$ ) et montrons que la propriété  $P_{k+1}$  est également vraie (càd  $u_{k+1} = 2^{k+2} + 1$ )

On sait que 
$$u_{k+1} = 2 u_k - 1$$

Or 
$$u_k = 2^{k+1} + 1$$

Alors 
$$u_{k+1} = 2 \times (2^{k+1} + 1) - 1 = 2 \times 2^{k+1} + 2 - 1 = 2^{k+2} + 1$$

Donc la propriété  $P_{k+1}$  est également vraie

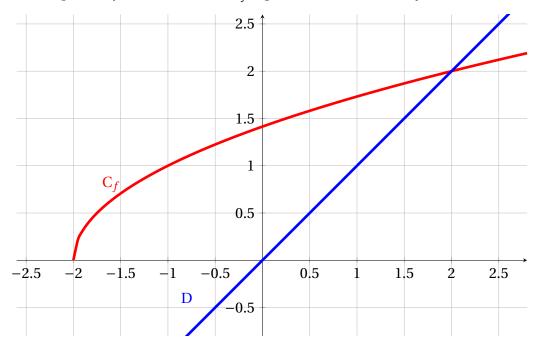
<u>Conclusion</u>: La propriété étant initialisée au rang 0 et héréditaire, d'après le principe de récurrence, pour tout entier naturel n,  $u_n = 2^{n+1} + 1$ 



## Exercice 3.

On considère la suite  $(u_n)$  définie sur  $\mathbb N$  par  $u_0=-1$  et  $u_{n+1}=\sqrt{2+u_n}$ .

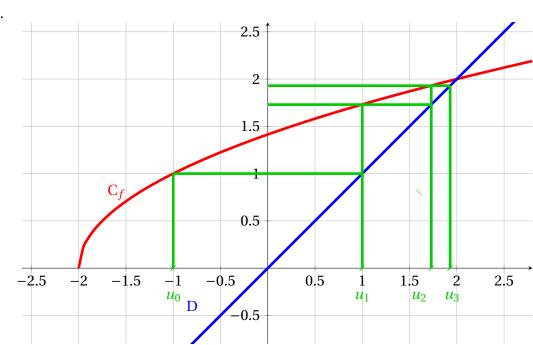
1. Sans les calculer, représenter ci-dessous les quatre premiers termes de cette suite sachant qu'on a déjà tracé la droite D d'équation y = x et la courbe  $C_f$  représentant la fonction  $f: x \longmapsto \sqrt{2+x}$ .



- 2. Conjecturer le sens de variation de cette suite.
- 3. (a) Démontrer par récurrence que pour tout entier naturel n,  $-2 < u_n < u_{n+1} < 2$ 
  - (b) En déduire le sens de variation de la suite  $(u_n)$
  - (c) La suite  $(u_n)$  est-elle convergente?

# Correction

1.





- 2. la suite ( $u_n$ ) semble croissante
- 3. (a) On définit la propriété suivante : pour tout entier naturel n,  $P_n$  :  $-2 < u_n < u_{n+1} < 2$

Initialisation: pour 
$$n = 0$$
, on a  $u_0 = -1$  et  $u_1 = \sqrt{2 + u_0} = \sqrt{2 - 1} = 1$ 

D'où on obtient bien  $-2 < u_0 < u_1 < 2$ 

Donc la propriété P<sub>0</sub> est vraie

<u>Hérédité</u>: soit un entier naturel k, on suppose que la propriété  $P_k$  est vraie (càd  $-2 < u_k < u_{k+1}$ ) et montrons que la propriété  $P_{k+1}$  est également vraie (càd  $-2 < u_{k+1} < u_{k+2}$ )

On sait que 
$$-2 < u_k < u_{k+1} < 2$$

$$-2+2 < u_k + 2 < u_{k+1} + 2 < 2+2$$

$$\sqrt{0} < \sqrt{u_k + 2} < \sqrt{u_{k+1} + 2} < \sqrt{4}$$
 puisque la fonction racine carrée

est strictement croissante

 $sur [0; +\infty[$ 

$$-2 < 0 < u_{k+1} < u_{k+2} < 2$$
 puisque  $u_{n+1} = \sqrt{2 + u_n}$ 

Donc la propriété  $P_{k+1}$  est également vraie

<u>Conclusion</u>: La propriété étant initialisée au rang 0 et héréditaire, d'après le principe de récurrence, pour tout entier naturel n,  $-2 < u_n < u_{n+1} < 2$ 

- (b) Comme on vient de prouver que pour tout entier naturel n,  $-2 < u_n < u_{n+1} < 2$ On peut donc en déduire que la suite  $(u_n)$  est croissante et bornée sur [-2;2]
- (c) On sait que la suite suite  $(u_n)$  est décroissante et majorée par 2 d'après le théorème de convergence, on peut dire que la suite  $(u_n)$  est convergente