

Suites et principe de récurrence

I Rappels sur les suites numériques

Définition 1 : suite numérique

On appelle suite de terme général u_n et on note $(u_n)_{n\geq 0}$ ou plus simplement u la liste ordonnée des nombres $u_0,u_1,u_2,u_3,...$

Les nombres sont appelés les de la suite.

Une suite (u_n) permet donc d'associer à chaque entier n un réel qu'on note u_n .

I.1 Mode de génération

Une suite (u_n) est entièrement définie si on est capable de calculer u_n pour n'importe quelle valeur de n.

I.1a Suite définie explicitement

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ donnée par $x \mapsto f(x) = \frac{x+3}{x^2+1}$.

Si $x \in \mathbb{N}$, f(x) est toujours défini. On peut donc considérer la suite (u_n) de terme général $u_n = f(n) = \frac{n+3}{n^2+1}$.

Dans cette situation, on est bien en mesure de calculer u_n pour tout $n \in \mathbb{N}$.

1.1b Suite définie par une relation de récurrence

Définition 2 : suite définie par récurrence

Soit f une fonction numérique définie sur $\mathbb R$ et a un réel quelconque.

On dit que la suite (u_n) vérifiant $\begin{cases} u_0 &= a \\ u_{n+1} &= f(u_n) \ (\forall n \in \mathbb{N}) \end{cases}$ est définie par récurrence.

Remarque 1. Quel que soit l'entier n, le calcul de u_n est donc possible mais cela peut être long puisque pour calculer il faut connaître u_{n-1} , et pour connaître u_{n-1} il faut avoir u_{n-2} ...

Ð

Représentation graphique d'une suite définie par récurrence

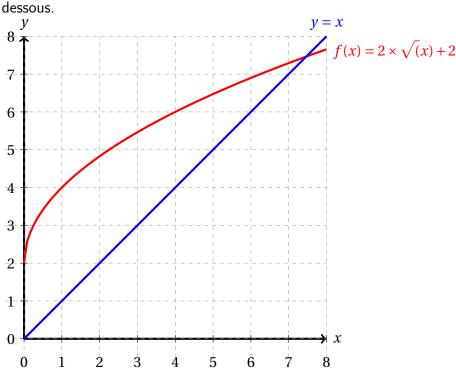
Soit
$$(u_n)$$
 la suite définie
$$\begin{cases} u_0 &= a \\ u_{n+1} &= f(u_n) \ (\forall n \in \mathbb{N}) \end{cases}$$

On trace la courbe représentative de f, ainsi que la droite \mathscr{D} d'équation y = x.

On place ensuite sur l'axe des abscisses u_0 . On a $u_1 = f(u_0)$; on peut donc lire u_1 sur l'axe des ordonnées comme l'image de u_0 par f.

On reporte alors u_1 sur l'axe des abscisses grâce à \mathcal{D} .

Exemple 1. On considère la fonction f donnée par $f: x \mapsto 2\sqrt{x} + 2$ dont une représentation est donnée ci-



On définit la suite (u_n) par $\left\{ \begin{array}{rcl} u_0 &=& 1 \\ u_{n+1} &=& f(u_n) \ (n \in \mathbb{N}) \end{array} \right.$

1. Déterminer u_1 , u_2 et u_3 par le calcul.

.....

2. Représenter u_1 , u_2 et u_3 sur l'axe des abscisses.

I.2 Variations d'une suite

Définition 3 : sens de variations

On définit les sens de variations d'une suite ainsi :

- Une suite est dite **croissante** si pour tout entier naturel n, on a u_{n+1} u_n
- Une suite est dite si pour tout entier naturel n, on a $u_{n+1} \le u_n$
- Une suite est dite constante si pour tout entier naturel n, on a
 On pourrait de même définir la stricte croissance et la stricte décroissance en utilisant des inégalités strictes.

Remarque 2. En général, pour étudier les variations d'une suite définie par récurrence, on peut commencer par voir s'il est possible d'étudier :

- le signe de $u_{n+1} u_n$, pour $n \in \mathbb{N}$, si la suite est construite avec des
- la position par rapport a 1 de $\frac{u_{n+1}}{u_n}$, pour $n \in \mathbb{N}$ et $u_0 \neq 0$, si la suite est construite avec des

Propriété 1 : cas des suites explicites

Soient f une fonction définie sur \mathbb{R}_+ et la suite (u_n) définie sur \mathbb{N} par $u_n = f(n)$.

Si f est croissante (resp. décroissante) sur \mathbb{R}_+ , alors (u_n) est une suite croissante (resp. décroissante).

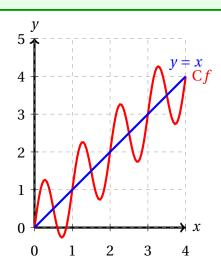
Attention

La réciproque de la propriété ci-dessus est fausse.

Prenons par exemple la fonction f définie par $f(x) = x + \sin(2\pi x)$.

Elle n'est pas monotone sur \mathbb{R}_+ , pourtant la suite u_n définie par $u_n=f(n)$ est croissante.

En effet, pour tout $n \in \mathbb{N}$, on a $\sin(2\pi n) = \sin(2\pi) = 0$, d'où $u_n = n$.



Exemple 2	. Etudie	er les vari	ations de (<i>i</i>	u_n) définie s	sur $\mathbb N$ par u_n	$n = 2n^2 + 3n -$	- 4.	

Suites arithmétiques et suites géométriques

Définition 4 : suite arithmétique

Une suite est dite **arithmétique** s'il existe un réel r tel que pour tout $n \in \mathbb{N}$, on a $u_{n+1} = \dots$ Le réel r est appelé la **raison** de la suite (u_n) .

Propriété 2 : formules pour les suites arithmétiques

Soit (u_n) une suite arithmétique de raison r. On a alors pour tout $n \in \mathbb{N}$ et pour tout $p \in \mathbb{N}$:

Expression de u_n en fonction de n

•
$$u_n = u_0 + \dots$$

•
$$u_n = u_1 + \dots$$

•
$$u_n = u_0 + \dots$$
 • $u_n = u_1 + \dots$ • $u_n = u_p + \dots$

Somme des termes consécutifs

•
$$\sum_{i=0}^{n} u_i$$
 = nombre de termes × $\frac{\text{premier terme} + \text{dernier terme}}{2}$

Définition 5 : suite géométrique

Une suite est dite **géométrique** s'il existe un réel q tel que pour tout $n \in \mathbb{N}$, on a $u_{n+1} = \dots$ Le réel q est appelé la **raison** de la suite (u_n) .

Propriété 3 : formules pour les suites géométriques

Soit (u_n) une suite géométrique de raison q. On a alors pour tout $n \in \mathbb{N}$ et pour tout $p \in \mathbb{N}$:

Expression de u_n en fonction de n

•
$$u_n = u_0 \times$$

$$\bullet \quad u_n = u_1 \times \dots \qquad \bullet \quad u_n = u_p \times \dots$$

$$u_n = u_p \times \dots$$

Somme des termes consécutifs : si $q \neq 1$ alors

•
$$1 + q + q^2 + ... + q^n = ...$$

$$\sum_{i=p}^{n} u_i = u_p + u_{p+1} + \dots + u_n = \dots$$

•
$$\sum_{i=0}^{n} u_i = \text{premier terme} \times \frac{1 - q^{\text{nombre de termes}}}{1 - q}$$

II Raisonnement par récurrence

Théorème 1 : Récurrence

Soit (\mathcal{P}_n) une famille de propriétés définies sur \mathbb{N} .

- On énonce la propriété à démontrer.
- **Initialisation** : (\mathcal{P}_0) on vérifie que la propriété est vraie pour $n = n_0$.
- Hérédité: on vérifie que si l'on suppose que la propriété est vraie à un rang k ≥ n₀ (c'est ce que l'on appelle l'hypothèse de récurrence) alors la propriété est vraie au rang k+1 (le rang suivant k),

c'est à dire si pour tout $k \ge 0$ on a $\mathscr{P}_k \Rightarrow \mathscr{P}_{k+1}$.

• Conclusion : la propriété est vraie pour $n=n_0$ et elle est héréditaire ; donc par récurrence elle est vraie pour tout $n \ge n_0$.

Remarque 3. Le raisonnement par récurrence comporte deux phases :

- 1. Prouver que la propriété est initialisée
- 2. Prouver que la propriété est héréditaire

Si on montre ces deux phases la propriété est démontrée pour tout entier naturel.

Remarque 4. Parfois, on veut montrer qu'une propriété est vraie à partir d'un certain rang n_0 . On peut utiliser ce théorème avec rang n_0 au lieu de rang 0 et avec $n \ge n_0$ au lieu de $n \ge 0$.

1. Démontrer que pour tout naturel n, $0 < u_n < 2$. Montrons l'encadrement de u_n par récurrence.

Exemple 3. La suite (u_n) est définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{2 + u_n} \ (n \in \mathbb{N}) \end{cases}$

On d	définit pour tout $n: \mathscr{P}_n: 0 < u_n < 2$.	
(a)	a) Initialisation.	
(b)	b) Hérédité.	

(c) Conclusion .			

	Prouver que la suite est strictement croissante.
	Montrons que (u_n) est croissante. On définit pour tout $n: \mathcal{P}_n: u_n < u_{n+1}$.
	(a) Initialisation.
	(b) Hérédité.
	(c) Conclusion
	(c) Conclusion.
Pi	ropriété 4 : Inégalité de Bernoulli
Sc	Dit un réel a strictement positif et pour tout entier naturel $n: (1+a)^n \ge 1+na$.
Dómo	ontrons par récurrence la propriété pour tout $n \in \mathbb{N}$: \mathscr{P}_n : $(1+a)^n \ge 1+na$.
	Initialisation.
1.	initialisation.
0	ainsi 🙉 ast vraig
2.	
	Hérédité.
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que est alors vraie.
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que est alors vraie. On doit donc montrer que si $(1+a)^k \geqslant 1+ka$ alors
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que est alors vraie.
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que est alors vraie. On doit donc montrer que si $(1+a)^k \geqslant 1+ka$ alors
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que est alors vraie. On doit donc montrer que si $(1+a)^k \geqslant 1+ka$ alors
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que est alors vraie. On doit donc montrer que si $(1+a)^k \geqslant 1+ka$ alors
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que est alors vraie. On doit donc montrer que si $(1+a)^k \geqslant 1+ka$ alors
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que est alors vraie. On doit donc montrer que si $(1+a)^k \geqslant 1+ka$ alors
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que
	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que
3.	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que
3.	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que
3.	Hérédité. Soit $k \in \mathbb{N}$, on suppose que \mathscr{P}_k est vraie, montrons que

Attention. Si l'étape 1 ou si l'étape 2 manque, on peut arriver à une fausse conclusion.

Contre-exemple 5 (Seul l'hérédité est vérifiée).

On considère pour tout $n \in \mathbb{N}$: \mathcal{P}_n : $\forall n \in \mathbb{N}, 3$ divise 2^n .

Si \mathscr{P}_n est vraie pour un certain $n \in \mathbb{N}$, alors 3 divise

Cela veut dire que l'on peut écrire $2^n = \dots \times k$ pour un certain entier naturel k.

En multipliant par, on obtient $2^{n+1} = 2 \times 2^n = 2 \times 3k = (2k) \times 3$.

Donc divise

Bien qu'héritaire, rien ne prouve que cette propriété soit vraie.

Elle n'a pas été initialisée car, il manque l'étape 1.

Il se trouve même qu'elle est fausse pour tout n.

Contre-exemple 6	(Seul	l'initialisation	est vérifiée))
-------------------------	-------	------------------	---------------	---

Soit la propriété suivante : $\forall n \in \mathbb{N}, n^2 - n + 41$ est un nombre premier.

Pour tout n, on définit \mathcal{P}_n : $n^2 - n + 41$ est un nombre premier.

Posons $u_n = n^2 - n + 41$.

On peut calculer dans un tableau de valeurs, u_0 , u_1 , u_2 , ...

.....

.....

Alors u_0 , u_1 et u_2 sont

Mais $u_{41} = \dots$

<u>Conclusion</u>: La véracité d'une propriété pour quelques valeurs ne prouve pas le cas général.

III Suite majorée, minorée, bornée

Définition 6: majoration, minoration

On dit que la suite (u_n) est

- majorée si, et seulement si, il existe un réel M tel que $\forall n \in \mathbb{N}, u_n \leq M$.
- **minorée** si, et seulement si, il existe un réel m tel que $\forall n \in \mathbb{N}, u_n \geq m$.

Exemple 4.

Montrer que la suite (u_n) définie sur \mathbb{N}^* par $u_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}$ est bornée par l'intervalle $\left[\frac{1}{2};1\right]$.

• Montrons que pour tout $n \in \mathbb{N}^*$, $u_n \le 1$.

On sait que pour tout $n \in \mathbb{N}^{\star}$, $n \le n+1$ d'où $\frac{1}{n}$ $\frac{1}{n+1}$ alors $\frac{1}{n+1}$ $\frac{1}{n}$.

Ainsi $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \le \frac{1}{n} + \frac{1}{n} + \ldots + \frac{1}{n}$ (on a termes)

Alors $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \le n \times \ldots$

Donc $u_n \leq \dots$

• Montrons que pour tout $n \in \mathbb{N}^*$, $u_n \ge \dots$

On sait que pour tout $n \in \mathbb{N}^*$, $n \le 2n$ d'où $\frac{1}{n} \ge \frac{1}{2n}$.

Ainsi $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \ge \ldots$ (on a termes).

Alors $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \ge \ldots$

Donc $u_n \ge \dots$

Conclusion : Pour tout $n \in \mathbb{N}^{\star}$, $\frac{1}{2} \le u_n \le 1$, autrement dit, la suite (u_n) est bornée dans $\left[\frac{1}{2};1\right]$.

Théorèmes de convergence

On admet les théorèmes suivants :

Théorème 2 : divergence

- Si une suite (u_n) est croissante et non majorée alors la suite diverge vers
- Si une suite (u_n) est et non alors la suite diverge vers $-\infty$.

Attention: La réciproque de ce théorème est fausse! Si une suite diverge vers $+\infty$, elle n'est pas nécessairement croissante.

Pour s'en convaincre, voici deux suites qui divergent vers $+\infty$ et qui ne sont pas monotones :

Pour s en convaniere, $u_n = n + (-1)^n \text{ et } v_n = \begin{cases} n & \text{si } n \text{ est pair} \\ 2n & \text{si } n \text{ est impair} \end{cases}$

Théorème 3 : convergence bornée

- Si une suite (u_n) est croissante et majorée alors la suite converge.
- Si une suite (u_n) est décroissante et alors la suite converge.

Attention : Ce théorème permet de montrer qu'une suite converge vers une limite ℓ mais ne donne pas la valeur de cette limite.

On peut seulement dire que, si (u_n) est croissante et majorée par M alors $\ell \leq M$.

De même si (u_n) est décroissante et minorée par m alors $\ell \ge m$.

Exemple 5. Soit la suite (u_n) définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{3u_n + 4} \end{cases}$

- 1. Montrer que (u_n) est croissante et majorée par
- 2. En déduire que (u_n) converge.
- 3. On admet que (u_n) converge vers 4, déterminer à l'aide d'un algorithme, l'entier N à partir duquel $u_n > 3,99.$

9

Réponse

-			4	
1. Montrons par récurrence que la suite (u_n) est croissante et majorée par 4, revient à moi				
	tout n , on a \mathscr{P}_n : $0 \le u_n \le u_{n+1}$	$_{1}\leq4.$		
	(a) Initialisation. Vérifions q	ue \mathscr{P}_0 est vraie. On a u_0 = et ι	$\iota_1 = \dots $	
	Alors 0 ≤ ≤	≤≤ 4. Ainsi la proposit	ion est initialisée.	
	(b) Hérédité. On suppose qu	e pour un certain k on a $\mathscr{P}_k: 0 \le u_k \le u$	$t_{k+1} \le 4.$	
	Il faut montrer que \mathscr{P}_{k+1}	est vraie, c'est à dire que		
	On part de $0 \le u_k \le u_{k+1}$:			
	•			
	·			
	L'hérédité est validée.			
	(c) Conclusion. Par	et	, la suite (u_n) est crois-	
	sante et majorée par 4.			
2.	En déduire que (u_n) converge.			
_				
3.		e vers 4, on peut utiliser un algorithme com	nme ci-dessous afin de déterminer	
	l'entier N à partir duquel $u_n > 3$	3,99. 	_	
		1 Entrée		
		2 N est un entier		
		3 U est un nombre réel		
		4 Initialisation		
		5 → U		
		6 → N		

11 FinTantque

7 Traitement

- 12 Sortie
- 13 Afficher, |U-4|.

8 Tant que $|U-4|.....10^{-2}$ faire

..... → U

 $N+1 \rightarrow$