

Suites et principe de récurrence

I Rappels sur les suites numériques

Définition 1 : suite numérique

On appelle suite de terme général u_n et on note $(u_n)_{n\geq 0}$ ou plus simplement u la liste ordonnée des nombres $u_0,u_1,u_2,u_3,...$

Les nombres sont appelés les termes de la suite.

Une suite (u_n) permet donc d'associer à chaque entier n un réel qu'on note u_n .

I.1 Mode de génération

Une suite (u_n) est entièrement définie si on est capable de calculer u_n pour n'importe quelle valeur de n.

I.1a Suite définie explicitement

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ donnée par $x \mapsto f(x) = \frac{x+3}{x^2+1}$.

Si $x \in \mathbb{N}$, f(x) est toujours défini. On peut donc considérer la suite (u_n) de terme général $u_n = f(n) = \frac{n+3}{n^2+1}$.

On a alors :
$$u_0 = f(0) = \frac{0+3}{0^2+1} = 3$$
 $u_1 = f(1) = \frac{1+3}{1^2+1} = 3$.

Dans cette situation, on est bien en mesure de calculer u_n pour tout $n \in \mathbb{N}$.

I.1b Suite définie par une relation de récurrence

Définition 2 : suite définie par récurrence

Soit f une fonction numérique définie sur $\mathbb R$ et a un réel quelconque.

On dit que la suite (u_n) vérifiant $\begin{cases} u_0 &= a \\ u_{n+1} &= f(u_n) \ (\forall \, n \in \mathbb{N}) \end{cases}$ est définie par récurrence.

Remarque 1. Quel que soit l'entier n, le calcul de u_n est donc possible mais cela peut être long puisque pour calculer il faut connaître u_{n-1} , et pour connaître u_{n-1} il faut avoir u_{n-2} ...

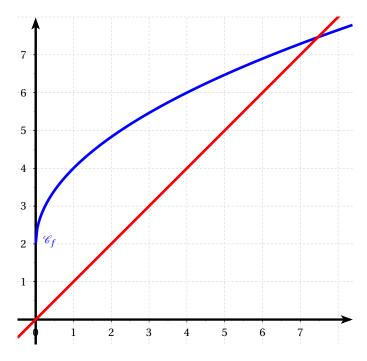
Représentation graphique d'une suite définie par récurrence

Soit
$$u$$
 la suite définie
$$\begin{cases} u_0 &= a \\ u_{n+1} &= f(u_n) \ (\forall n \in \mathbb{N}) \end{cases}$$

On trace la courbe représentative de f, ainsi que la droite $\mathscr D$ d'équation y=x.

On place ensuite sur l'axe des abscisses u_0 . On a $u_1 = f(u_0)$; on peut donc lire u_1 sur l'axe des ordonnées comme l'image de u_0 par f. On reporte alors u_1 sur l'axe des abscisses grâce à \mathscr{D} .

<u>**Exemple**</u> 1. On considère la fonction f donnée par $f: x \mapsto 2\sqrt{x} + 2$ dont une représentation est donnée cidessous.



On définit la suite u par $\left\{ \begin{array}{rcl} u_0 &=& 1 \\ \\ u_{n+1} &=& f(u_n) \ (n \in \mathbb{N}) \end{array} \right.$

1. Déterminer u_1, u_2 et u_3 par le calcul.

$$u_1 = 2\sqrt{u_0} + 2 = 2\sqrt{1} + 2 = 2 + 2 = 4$$

$$u_2 = 2\sqrt{u_1} + 2 = 2\sqrt{4} + 2 = 2 \times 2 + 2 = 4 + 2 = 6$$

$$u_3 = 2\sqrt{u_2} + 2 = 2\sqrt{6} + 2$$

2. Représenter u_1 , u_2 et u_3 sur l'axe des abscisses.

I.2 Variations d'une suite

Définition 3 : sens de variations

On définit les sens de variations d'une suite ainsi :

- Une suite est dite **croissante** si pour tout entier naturel n, on a $u_{n+1} \ge u_n$
- Une suite est dite **décroissante** si pour tout entier naturel n, on a $u_{n+1} \le u_n$
- Une suite est dite constante si pour tout entier naturel n, on a u_{n+1} = u_n.
 On pourrait de même définir la stricte croissance et la stricte décroissance en utilisant des inégalités strictes.

Remarque 2. En général, pour étudier les variations d'une suite définie par récurrence, on peut commencer par voir s'il est possible d'étudier :

- le signe de $u_{n+1} u_n$, pour $n \in \mathbb{N}$, si la suite est construite avec des additions
- la position par rapport a 1 de $\frac{u_{n+1}}{u_n}$, pour $n \in \mathbb{N}$ et $u_0 \neq 0$, si la suite est construite avec des multiplications.

Propriété 1 : cas des suites explicites

Soient f une fonction définie sur \mathbb{R}_+ et la suite u définie sur \mathbb{N} par $u_n = f(n)$.

Si f est croissante (resp. décroissante) sur \mathbb{R}_+ , alors u est une suite croissante (resp. décroissante).

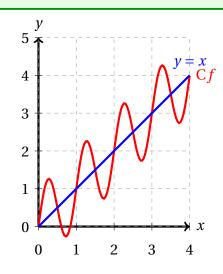
Attention

La réciproque de la propriété ci-dessus est fausse.

Prenons par exemple la fonction f définie par $f(x) = x + \sin(2\pi x)$.

Elle n'est pas monotone sur \mathbb{R}_+ , pourtant la suite u_n définie par $u_n = f(n)$ est croissante.

En effet, pour tout $n \in \mathbb{N}$, on a $\sin(2\pi n) = \sin(2\pi) = 0$, d'où $u_n = n$.



Exemple 2. Étudier les variations de u définie sur \mathbb{N} par $u_n = 2n^2 + 3n - 4$.

La fonction f définie par $f(x) = 2x^2 + 3x - 4$ admet un minimum en $\frac{-b}{2a} = \frac{-3}{2 \times 2} = \frac{-3}{4}$.

La fonction f est donc croissante sur \mathbb{R}_+ , alors la suite (u_n) définie par $u_n=f(n)$ est également croissante.

Suites arithmétiques et suites géométriques

Définition 4 : suite arithmétique

Une suite est dite arithmétique s'il existe un réel r tel que pour tout $n \in \mathbb{N}$ on a $u_{n+1} = u_n + r$.

Le réel r est appelé la raison de la suite (u_n) .

Propriété 2 : formules pour les suites arithmétiques

Soit (u_n) une suite arithmétique de raison r. On a alors pour tout $n \in \mathbb{N}$ et pour tout $p \in \mathbb{N}$:

Expression de u_n en fonction de n

$$u_n = u_0 + nr$$

$$u_n = u_1 + (n-1)r$$

$$u_n = u_p + (n-p)r$$

Somme des termes consécutifs

•
$$1+2+...+n=\frac{n(n+1)}{2}$$

$$\sum_{i=0}^{n} u_i = u_0 + u_1 + \ldots + u_n = (n+1) \frac{u_0 + u_n}{2}$$

$$\sum_{i=0}^{n} u_i = u_1 + u_1 + \ldots + u_n = n \frac{u_1 + u_n}{2}$$

•
$$\sum_{i=0}^{n} u_i$$
 = nombre de termes × $\frac{\text{premier terme} + \text{dernier terme}}{2}$

Définition 5 : suite géométrique

Une suite est dite géométrique s'il existe un réel q tel que pour tout $n \in \mathbb{N}$ on a $u_{n+1} = u_n \times q$.

Le réel q est appelé la **raison** de la suite (u_n) .

Propriété 3 : formules pour les suites géométriques

Soit (u_n) une suite géométrique de raison q. On a alors pour tout $n \in \mathbb{N}$ et pour tout $p \in \mathbb{N}$:

Expression de u_n en fonction de n

$$u_n = u_0 \times q^n$$

$$u_n = u_1 \times q^{n-1}$$

$$u_n = u_p \times q^{n-p}$$

Somme des termes consécutifs : si $q \neq 1$ alors

$$1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

$$\sum_{i=0}^{n} u_i = u_0 + u_1 + \ldots + u_n = u_0 \frac{1 - q^{n+1}}{1 - q}$$

$$\sum_{i=1}^{n} u_i = u_1 + u_2 + \dots + u_n = u_1 \frac{1 - q^n}{1 - q} \qquad \sum_{i=p}^{n} u_i = u_p + u_{p+1} + \dots + u_n = u_p \frac{1 - q^{n-p+1}}{1 - q}$$

•
$$\sum_{i=0}^{n} u_i = \text{premier terme} \times \frac{1 - q^{\text{nombre de termes}}}{1 - q}$$

II Raisonnement par récurrence

Activités : Dominos (à projeter) puis activité 1 page 14

Théorème 1 : Récurrence

Soit (\mathcal{P}_n) une famille de propriétés définies sur \mathbb{N} .

- 1. Initialisation : si la propriété est au rang 0 (\mathcal{P}_0) et
- 2. **Hérédité** : si la propriété est **héréditaire** à partir du rang 0, c'est à dire si pour tout $k \ge 0$ on a $\mathcal{P}_k \Rightarrow \mathcal{P}_{k+1}$.

Alors : la propriété est vraie à partir du rang 0.

Remarque 3. Le raisonnement par récurrence comporte deux phases :

- 1. Prouver que la propriété est initialisée
- 2. Prouver que la propriété est héréditaire

Si on montre ces deux phases la propriété est démontrée pour tout entier naturel.

Remarque 4. Parfois, on veut montrer qu'une propriété est vraie à partir d'un certain rang n_0 . On peut utiliser ce théorème avec rang n_0 au lieu de rang 0 et avec $n \ge n_0$ au lieu de $n \ge 0$.

Exemple 3. La suite
$$(u_n)$$
 est définie par
$$\begin{cases} u_0 &= 1 \\ u_{n+1} &= \sqrt{2+u_n} \ (n \in \mathbb{N}) \end{cases}$$

- 1. Démontrer que pour tout naturel n, $0 < u_n < 2$.
- 2. Prouver que la suite est strictement croissante.

Réponse

1. Montrons l'encadrement de u_n par récurrence.

On définit pour tout $n : \mathcal{P}_n : 0 < u_n < 2$.

- 1. **Initialisation.** On a $u_0 = 1$ donc $0 < u_n < 2$. \mathcal{P}_0 est vraie, la propriété est initialisée.
- 2. **Hérédité.** Soit $k \in \mathbb{N}$. On suppose que \mathscr{P}_k est vraie, montrons que \mathscr{P}_{k+1} est alors vraie.

On doit donc montrer que si $0 < u_k < 2$ alors $0 < u_{k+1} < 2$.

Si $0 < u_k < 2$, alors $2 < u_k + 2 < 4$, puis comme la fonction racine carrée est croissante $\sqrt{2} < \sqrt{u_k + 2} < \sqrt{4}$. Autrement dit $0 < u_{k+1} < 2$.

La propriété est donc héréditaire.

3. **Conclusion.** Par initialisation et par hérédité, $\forall \in \mathbb{N}$, $0 < u_n < 2$.

- 2. Montrons que (u_n) est croissante. On définit pour tout $n: \mathscr{P}_n: u_n < u_{n+1}$.
 - 1. **Initialisation.** On a $u_0 = 1$ et $u_1 = \sqrt{3}$, donc $u_0 < u_1$. Ainsi \mathscr{P}_0 est vraie.
 - 2. **Hérédité.** Soit $k \in \mathbb{N}$. On suppose que \mathscr{P}_k est vraie, montrons que \mathscr{P}_{k+1} est alors vraie.

On doit donc montrer que si $u_n < u_{k+1}$ alors $u_{k+1} < u_{k+2}$.

Si $u_n < u_{k+1}$, alors $u_k + 2 < u_{k+1} + 2$, puis comme la fonction racine carrée est croissante $\sqrt{u_k + 2} < \sqrt{u_{k+1} + 2}$. Autrement dit $u_n < u_{k+1}$.

La propriété est donc héréditaire.

3. **Conclusion.** Par initialisation et par hérédité, $\forall \in \mathbb{N}$, $u_n < u_{n+1}$, et u est strictement croissante.

Propriété 4 : Inégalité de Bernoulli

Soit un réel a strictement positif et pour tout entier naturel n: $(1+a)^n \ge 1+na$.

Démontrons par récurrence la propriété pour tout $n \in \mathbb{N}$: \mathscr{P}_n : $(1+a)^n \ge 1+na$.

- 1. **Initialisation.** On a $(1+a)^0 = 1$ et $1+0 \times a = 1$. Ainsi \mathcal{P}_0 est vraie.
- 2. **Hérédité.** Soit $k \in \mathbb{N}$. On suppose que \mathscr{P}_k est vraie, montrons que \mathscr{P}_{k+1} est alors vraie.

On doit donc montrer que si $(1+a)^k > 1 + ka$ alors $(1+a)^{k+1} > 1 + (k+1)a$.

Partons de $(1+a)^k > 1+ka$. Comme 1+a > 0, on a $(1+a) \times (1+a)^k > (1+a)(1+ka)$.

Donc $(1+a)^{k+1} > 1 + ka + a + ka^2$.

Or $1 + ka + a + ka^2 = 1 + (k+1)a + ka^2 > 1 + (k+1)a$ car $ka^2 > 0$.

Par conséquent $(1+a)^{k+1} > 1 + (k+1)a$.

La propriété est donc héréditaire.

3. **Conclusion.** Par initialisation et par hérédité, $\forall \in \mathbb{N}$, $(1+a)^n > 1+na$.

Attention. Si l'étape 1 ou si l'étape 2 manque, on peut arriver à une fausse conclusion.

Contre-exemple 5 (Seul l'hérédité est vérifiée). On considère pour tout $n \in \mathbb{N} : \mathscr{P}_n : \forall n \in \mathbb{N} \text{ 3divise2}^n$.

Si \mathscr{P}_n est vraie pour un certain $n \in \mathbb{N}$, alors $3 \text{divise} 2^n$.

Cela veut dire que l'on peut écrire $2^n = 3 \times k$ pour un certain entier naturel k.

En multipliant par 2, on a $2^{n+1} = 2 \times 2^n = 2 \times 3k = (2k) \times 3$.

Donc 3 divise 2^{n+1}

Bien qu'héritaire, rien ne prouve que cette propriété soit vraie. Elle n'a pas été initialisée, il manque l'étape 1. Il se trouve même qu'elle est fausse pour tout n.

<u>Contre-exemple</u> 6 (Seul l'initialisation est vérifiée). Soit la propriété suivante : $\forall n \in \mathbb{N}, n^2 - n + 41$ est un nombre premier.

Pour tout n, on a défini \mathscr{P}_n : $n^2 - n + 41$ est un nombre premier.

Posons $u_n = n^2 - n + 41$. On peut calculer dans un tableau de valeurs, u_0 , u_1 , u_2 , ...

 u_0 , u_1 , u_2 ... sont premiers, mais $u_{41} = 41^2$ ne l'est pas.

Conclusion : La véracité d'une propriété pour quelques valeurs ne prouve pas le cas général.

Ш Suite majorée, minorée, bornée

Définition 6: majoration, minoration

On dit que la suite (u_n) est

- **majorée** si, et seulement si, il existe un réel M tel que $\forall n \in \mathbb{N}, u_n \leq M$.
- **minorée** si, et seulement si, il existe un réel m tel que $\forall n \in \mathbb{N}, u_n \geq m$.

Exemple 4. Montrer que la suite (u_n) définie sur \mathbb{N}^* par $u_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}$ est bornée par l'intervalle $\left|\frac{1}{2};1\right|$.

Montrons que pour tout $n \in \mathbb{N}^*$, $u_n \ge 1$.

On sait que pour tout $n \in \mathbb{N}^*$, $n \le n+1$ d'où $\frac{1}{n+1} \le \frac{1}{n}$.

Ainsi
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \le \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}$$
 (on a *n* termes)

Alors $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \le n \times \frac{1}{n} = 1$.

Donc $u_n \leq 1$.

Montrons que pour tout $n \in \mathbb{N}^*$, $u_n \ge \frac{1}{2}$.

On sait que pour tout $n \in \mathbb{N}^*$, $n \le 2n$ d'où $\frac{1}{n} \ge \frac{1}{2n}$.

Ainsi
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n}$$
 (on a *n* termes).
Alors $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge n \times \frac{1}{2n} = \frac{1}{2}$.

Alors
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge n \times \frac{1}{2n} = \frac{1}{2}$$

Donc $u_n \ge \frac{1}{2}$.

Conclusion : Pour tout $n \in \mathbb{N}^*$, $\frac{1}{2} \le u_n \le 1$. Autrement dit, la suite (u_n) est bornée dans $\left\lfloor \frac{1}{2}; 1 \right\rfloor$.

Théorèmes de convergence

On admet les théorèmes suivants :

Théorème 2 : divergence

- Si une suite (u_n) est croissante et non majorée alors la suite diverge vers $+\infty$.
- Si une suite (u_n) est décroissante et non minorée alors la suite diverge vers $-\infty$.

Attention : La réciproque de ce théorème est fausse ! Si une suite diverge vers $+\infty$, elle n'est pas nécessairement croissante.

Pour s'en convaincre, voici deux suites qui divergent vers $+\infty$ et qui ne sont pas monotones :

$$u_n = n + (-1)^n \text{ et } v_n = \begin{cases} n & \text{si } n \text{ est pair} \\ 2n & \text{si } n \text{ est impair} \end{cases}$$

Théorème 3 : convergence bornée

- Si une suite (u_n) est croissante et majorée alors la suite converge.
- Si une suite (u_n) est décroissante et minorée alors la suite converge.

Attention : Ce théorème permet de montrer qu'une suite converge vers une limite ℓ mais ne donne pas la valeur de cette limite.

On peut seulement dire que, si (u_n) est croissante et majorée par M alors $\ell \leq M$.

De même si (u_n) est décroissante et minorée par m alors $\ell \ge m$.

Exemple 5. Soit la suite
$$(u_n)$$
 définie par
$$\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{3u_n + 4} \end{cases}$$

- 1. Montrer que (u_n) est croissante et majorée par 4.
- 2. En déduire que (u_n) converge.
- 3. On admet que (u_n) converge vers 4, déterminer à l'aide d'un algorithme, l'entier N à partir duquel $u_n > 3,99$.

Réponses.

1. Montrons par récurrence que la suite (u_n) est croissante et majorée par 4.

Cela revient à montrer que pour tout n, on a

$$\mathscr{P}_n:\ 0\leq u_n\leq u_{n+1}\leq 4.$$

(a) Initialisation. Vérifions que \mathscr{P}_0 est vraie. On a u_0 et $u_1=\sqrt{3\,u_0+4}=\sqrt{4}=2$. Alors $0\leq u_0\leq u_1\leq 4$. Ainsi la proposition est initialisée.

(b) Hérédité. On suppose que pour un certain k on a

$$\mathcal{P}_k: 0 \leq u_k \leq u_{k+1} \leq 4.$$

Il faut montrer que P_{k+1} est vraie, c'est à dire que

$$\mathcal{P}_{k+1}: 0 \leq u_{k+1} \leq u_{k+2} \leq 4.$$

On part de $0 \le u_n \le u_{k+1} \le 4$. On en déduit que

$$0 \le 3u_n \le 3u_{k+1} \le 12$$
, puis que

$$4 \le 3u_n + 4 \le 3u_{k+1} + 4 \le 16$$
.

Or la fonction racine carré est croissante, donc on a $2 \le \sqrt{3u_n + 4} \le \sqrt{3u_{k+1} + 4} \le 4$.

Cette dernière inégalité n'est autre que la propriété $\mathcal{P}_{k+1}: 0 \le u_{k+1} \le u_{k+2} \le 4$.

L'hérédité est validée.

- (c) Conclusion. Par initialisation et hérédité, la suite (u_n) est croissante et majorée par 4.
- 2. On sait que (u_n) est croissante et majorée par 4. D'après le théorème des suites monotones, (u_n) est convergente.
- 3. On veut que $u_n > 3,99$, c'est à dire que $|u_n 4| < 0,01 = 10^{-2}$.

On peut utiliser un algorithme comme ci-dessous

Variables

N est un entier

U est un nombre réel

Entrées et initialisations

$$0 \rightarrow U$$

$$0 \rightarrow N$$

Traitement

Tant que $|U-4| \ge 10^{-2}$ faire

$$|\sqrt{3U+4} \rightarrow U$$

$$| N+1 \rightarrow N$$

Fin Tant que

Sorties

Aficher N, |U-4|