

Tableaux des dérivées

Dérivées des fonctions usuelles

Fonction f	Dérivée	f est définie sur	f est dérivable sur
f(x) = k (constante)	f'(x)=0	\mathbb{R}	\mathbb{R}
f(x) = x	f'(x) = 1	\mathbb{R}	\mathbb{R}
$f(x) = ax, \ a \in \mathbb{R}$	f'(x) = a	\mathbb{R}	\mathbb{R}
$f(x) = x^2$	f'(x) = 2x	\mathbb{R}	\mathbb{R}
$f(x) = x^n (n \in \mathbb{N})$	$f'(x) = nx^{n-1}$	R	R
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	$\mathbb{R}^* =]-\infty;0[\cup]0;+\infty[$	$\mathbb{R}^* =]-\infty;0[\cup]0;+\infty[$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	$\mathbb{R}_+ = [0; +\infty[$	$\mathbb{R}_+^*=]0;+\infty[$
$f(x) = e^x$	$f'(x) = e^x$	R	R

Opérations sur les dérivées

u et v désignent deux fonctions quelconques, définies et dérivables sur un intervalle I.

Fonction	Dérivée	
$ku, k \in \mathbb{R}$	ku'	
u + v	u' + v'	
uv	u'v + uv'	
$\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$	
u^2	2u'u	
$u^n \ (n \in \mathbb{N})$	$nu'u^{n-1}$	
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$	
e^u	$u'e^u$	

I Equation de la tangente

Equation de la tangente

Soit f une fonction définie et dérivable sur un intervalle I, et $\alpha \in I$.

Alors, l'équation réduite de la tangente à la courbe représentative C_f de f au point d'abscisse α est :

$$y = f'(\alpha)(x - \alpha) + f(\alpha)$$