

 $x^3 x^2 4$

Exercice 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = -\frac{x^3}{12} + \frac{x^2}{4} + 2x - \frac{4}{3}$

1. Calculer et **factoriser** f'(x).

2. Dresser le tableau de variations de f sur $]-\infty;+\infty[$. (Ne pas calculer les images).

Correction

1. On sait que $f(x) = -\frac{x^3}{12} + \frac{x^2}{4} + 2x - \frac{4}{3}$

Donc la fonction f est dérivable sur $\mathbb R$ comme fonction polynomiale

Alors
$$f'(x) = -3 \times \frac{x^2}{12} + 2 \times \frac{x}{4} + 2 = -\frac{1}{4}x^2 + \frac{1}{2}x + 2$$

C'est un polynôme de degré 2, on calcule son discriminant

$$\Delta = b^2 - 4ac = \left(\frac{1}{2}\right)^2 - 4 \times \left(-\frac{1}{4}\right) \times 2 = \frac{1}{4} + 2 = \frac{9}{4}$$

Ainsi f'(x) a deux racines : $x_1 = \frac{-\frac{1}{2} + \sqrt{\frac{9}{4}}}{2 \times \frac{-1}{4}} = \frac{-\frac{1}{2} + \frac{3}{2}}{\frac{-1}{2}} = 1 \times (-2) = -2$

et
$$x_2 = \frac{-\frac{1}{2} - \sqrt{\frac{9}{4}}}{2 \times \frac{-1}{4}} = \frac{-\frac{1}{2} - \frac{3}{2}}{\frac{-1}{2}} = (-2) \times (-2) = 4$$

Donc
$$f'(x) = -\frac{1}{4}(x+2)(x-4)$$

2. Dresser le tableau de variations de f sur] – ∞ ; + ∞ [. (Ne pas calculer les images).

On sait que $f'(x) = -\frac{1}{4}(x+2)(x-4)$ d'après la question précédente

On peut en déduire le tableau de signe

x	$-\infty$		-2		4		∞
$-\frac{1}{4}$		_		_		_	
x + 2		_	0	+		+	
x-4		-		_	0	+	
signe							
signe de $f'(x)$		_	Ü	+	Ü	_	

On en déduit donc le varaitaions de la fonctin f

					3		
x	$-\infty$		-2		4		∞
signe		_	Ò		Ó	_	
signe de $f'(x)$				+	U	_	
variations		_			f(4)	_	
de f		*	f(-2)				\

Exercice 2.

- 1. Résoudre dans \mathbb{R} l'équation : $e^{x^2-3} = e$
- 2. Résoudre dans \mathbb{R} l'équation $e^{-x} = -e^{(x-6)x}$

Correction

1. Résoudre dans \mathbb{R} l'équation : $e^{x^2-3} = 1$

$$e^{x^2-3} = 1 \iff e^{x^2-3} = e^0$$

$$\iff x^2 - 3 = 0$$

$$\iff x^2 - 3 = 0$$

$$\iff (x - \sqrt{3})(x + \sqrt{3}) = 0$$

$$\iff x = \sqrt{3} \text{ ou } x = -\sqrt{3}$$

Donc
$$\mathcal{S} = \left\{ -\sqrt{3}; \sqrt{3} \right\}$$

2. Résoudre dans \mathbb{R} l'équation $e^{-x} = -e^{(x-6)x}$

On a
$$e^{-x} = -e^{(x-6)x} \iff e^{-x} + e^{(x-6)x} = 0$$

Pour tout $x \in \mathbb{R}$, $e^{-x} > 0$ ainsi que $e^{(x-6)x} > 0$

D'où pour tout $x \in \mathbb{R}$, $e^{-x} + e^{(x-6)x} > 0$ et donc jamais égale à 0

Donc il n'y a pas de solution : $\mathscr{S} = \emptyset$

Exercice 3.

- 1. Simplifier l'expression $\frac{e^{x(x+2)}}{e^{x^2+4x-7}}$
- 2. Résoudre l'inéquation $\frac{e^{x(x+2)}}{e^{x^2+4x-7}} \ge 1$

Correction

1. Simplifier l'expression $\frac{e^{x(x+2)}}{e^{x^2+4x-7}}$

$$\frac{e^{x(x+2)}}{e^{x^2+4x-7}} = e^{x(x+2)-(x^2+4x-7)} = e^{x^2+2x-x^2-4x+7} = e^{-2x+7}$$

2. Résoudre l'inéquation $\frac{e^{x(x+1)}}{e^{x^2+3x-5}} \ge 1$

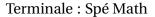
$$\frac{e^{x(x+1)}}{e^{x^2+3x-5}} \ge 1 \iff e^{-2x+7} \ge e^0$$

$$\iff -2x+7 \ge 0$$

$$\iff -2x \ge -7$$

$$\iff x \le \frac{7}{2} \qquad (car -2 < 0)$$

Donc
$$\mathcal{S} = \left[-\infty; \frac{7}{2} \right]$$



Exercice 4.

1. Déterminer les variations de la fonction h définie sur \mathbb{R} par $h(x) = (5-4x)e^x$.

2. Déterminer l'équation de la tangente à la courbe de *h* au point d'abscisse 0.

Correction

1. • Calcul de h'(x).

On a
$$h(x) = (5 - 4x) e^x$$

Donc la fonction h est dérivable sur $\mathbb R$ comme produit de fonctions dérivables sur $\mathbb R$

On note
$$h = uv$$
 avec $u(x) = 5 - 4x$ et $v(x) = e^x$ d'où $u'(x) = -4$ et $v'(x) = e^x$.

On en déduit que h' = u'v + v'u

D'où
$$h'(x) = -4e^x + (5-4x)e^x = (-4+5-4x)e^x = (1-4x)e^x$$

• Signe de h'(x) et variations de h.

Pour tout réel x, $e^x > 0$, donc le signe de h'(x) est le même que celui de 1 - 4x

x	$-\infty$		$\frac{1}{4}$		∞
signe de		_		_	
1-4x		'			
signe			0	_	
de $h'(x)$		Т	U		
variations			$h(\frac{1}{-})$		
de h			* "(4) -		→

2.
$$T_0: y = h'(0)(x-0) + h(0)$$

Or
$$h'(0) = (1 - 4 \times 0)e^0 = 1$$
, et $h(0) = (5 - 4 \times 0)e^0 = 5$

Donc
$$T_0: y = x + 5$$