

Exercice 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = -\frac{x^3}{12} + \frac{x^2}{4} + 2x - \frac{4}{3}$

- 1. Calculer et **factoriser** f'(x).
- 2. Dresser le tableau de variations de f sur $]-\infty;+\infty[$. (Ne pas calculer les images).
- 3. Déterminer l'équation de la tangente \mathcal{T} à la courbe représentative de f au point d'abscisse -1.

Correction

1. On sait que
$$f(x) = -\frac{x^3}{12} + \frac{x^2}{4} + 2x - \frac{4}{3}$$

Donc la fonction f est dérivable sur $\mathbb R$ comme fonction polynomiale

Alors
$$f'(x) = -3 \times \frac{x^2}{12} + 2 \times \frac{x}{4} + 2 = -\frac{1}{4}x^2 + \frac{1}{2}x + 2$$

C'est un polynôme de degré 2, on calcule son discriminant

$$\Delta = b^2 - 4ac = \left(\frac{1}{2}\right)^2 - 4 \times \left(-\frac{1}{4}\right) \times 2 = \frac{1}{4} + 2 = \frac{9}{4}$$

Ainsi f'(x) a deux racines : $x_1 = \frac{-\frac{1}{2} + \sqrt{\frac{9}{4}}}{2 \times \frac{-1}{4}} = \frac{-\frac{1}{2} + \frac{3}{2}}{\frac{-1}{2}} = 1 \times (-2) = -2$

et
$$x_2 = \frac{-\frac{1}{2} - \sqrt{\frac{9}{4}}}{2 \times \frac{-1}{4}} = \frac{-\frac{1}{2} - \frac{3}{2}}{\frac{-1}{2}} = (-2) \times (-2) = 4$$

Donc
$$f'(x) = -\frac{1}{4}(x+2)(x-4)$$

2. Dresser le tableau de variations de f sur] $-\infty$; $+\infty$ [. (Ne pas calculer les images).

On sait que $f'(x) = -\frac{1}{4}(x+2)(x-4)$ d'après la question précédente

On peut en déduire le tableau de signe

x	$-\infty$		-2		4		∞
$-\frac{1}{4}$		_		_		_	
x+2		_	0	+		+	
x-4		-		_	0	+	
signe			0		0		
signe de $f'(x)$			Ų	+	U		

On en déduit donc ls varaitaions de la fonctin f

					3		
	x	$-\infty$	-2		4		∞
ľ	signe		0				
	signe de $f'(x)$			+	Ų	_	
	variations	_		_	f(4)	_	
	$\mathrm{de}\ f$		f(-2)				\

3. L'équation de la tangente $\mathcal T$ à la courbe représentative de f au point d'abscisse -1 a pour équa-

tion
$$y = f'(-1)(x - (-1)) + f(-1)$$
 c'est à dire $y = f'(-1)(x + 1) + f(-1)$

Avec
$$f(-1) = -\frac{(-1)^3}{12} + \frac{(-1)^2}{4} + 2 \times (-1) - \frac{4}{3} = -\frac{1}{12} + \frac{1}{4} - 2 - \frac{4}{3} = \frac{1+3-24-16}{12} = \frac{-36}{12} = -3$$

et

$$f'(-1) = -\frac{1}{4}(-1)^2 + \frac{1}{2} \times (-1) + 2 = -\frac{1}{4} - \frac{1}{2} + 2 = \frac{-1 - 2 + 8}{4} = \frac{5}{4}$$

d'où
$$(\mathcal{T})$$
: $y = \frac{5}{4}(x+1) - 3$

$$(\mathcal{T}) : y = \frac{5}{4}x + \frac{5}{4} - 3$$

$$(\mathcal{T}): y = \frac{5}{4}x + \frac{5-12}{4}$$

Donc
$$(\mathcal{T}): y = \frac{5}{4}x - \frac{7}{4}$$

Exercice 2.

- 1. Résoudre dans \mathbb{R} l'équation : $e^{(x-6)x} = 1$
- 2. Résoudre dans \mathbb{R} l'équation $e^{-x} = -1$
- 3. Résoudre l'inéquation $e^{-4x+3} > e$

Correction

1. Résoudre dans \mathbb{R} l'équation : $e^{(x-6)x} = 1$

$$e^{(x-6)x} = 1 \iff e^{(x-6)x} = e^x 0$$

$$\iff$$
 $(x-6)x=0$

$$\iff$$
 $x = 6$ ou $x = 0$

Donc
$$\mathscr{S} = \{5; 0\}$$

2. Résoudre dans \mathbb{R} l'équation $e^{-x} = -1$

Pour tout
$$x \in \mathbb{R}$$
, $e^{-x} > 0 > -1$

Donc il n'y a pas de solution : $\mathscr{G} = \emptyset$

3. Résoudre l'inéquation $e^{-4x+3} > e$

$$e^{-4x+3} > e \iff e^{-4x+3} > e^{1}$$

$$\iff$$
 $-4x+3>1$

$$\longrightarrow$$
 $-4r > -2$

$$\iff x < \frac{-2}{-4} = \frac{1}{2} \quad (\text{car } -4 < 0)$$

Donc
$$\mathcal{S} = \left] -\infty; \frac{1}{2} \right[$$

Exercice 3. Déterminer les variations de la fonction h définie sur \mathbb{R} par $h(x) = (5-4x)e^x$.

Correction

• Calcul de h'(x).

On a
$$h(x) = (5 - 4x) e^x$$

Donc la fonction h est dérivable sur $\mathbb R$ comme produit de fonctions dérivables sur $\mathbb R$

On note
$$h = uv$$
 avec $u(x) = 5 - 4x$ et $v(x) = e^x$ d'où $u'(x) = -4$ et $v'(x) = e^x$.

On en déduit que h' = u'v + v'u

D'où
$$h'(x) = -4e^x + (5-4x)e^x = (-4+5-4x)e^x = (1-4x)e^x$$

• Signe de h'(x) et variations de h.

Pour tout réel x, $e^x > 0$, donc le signe de h'(x) est le même que celui de 1 - 4x

x	$-\infty$		$\frac{1}{4}$		∞
signe de		+	0	_	
1-4x					
signe			0	_	
de h'(x)		Т	U		
variations			$+ h\left(\frac{1}{4}\right)$		
de <i>h</i>			* "(4) -		→