

Exercice 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = -\frac{x^3}{6} + \frac{x^2}{4} + x + \frac{1}{6}$

- 1. Calculer et **factoriser** f'(x).
- 2. Dresser le tableau de variations de f sur] $-\infty$; $+\infty$ [. (Ne pas calculer les images).

Correction

1. On sait que
$$f(x) = -\frac{x^3}{6} + \frac{x^2}{4} + x + \frac{1}{6}$$

Donc la fonction f est dérivable sur $\mathbb R$ comme fonction polynomiale

Alors
$$f'(x) = -3 \times \frac{x^2}{6} + 2 \times \frac{x}{4} + 1 = -\frac{1}{2}x^2 + \frac{1}{2}x + 1$$

C'est un polynôme de degré 2, on calcule son discriminant

$$\Delta = b^2 - 4ac = \left(\frac{1}{2}\right)^2 - 4 \times \left(-\frac{1}{2}\right) \times 1 = \frac{1}{4} + 2 = \frac{9}{4}$$

Ainsi
$$f'(x)$$
 a deux racines : $x_1 = \frac{-\frac{1}{2} + \sqrt{\frac{9}{4}}}{2 \times \frac{-1}{2}} = \frac{-\frac{1}{2} + \frac{3}{2}}{-1} = \frac{1}{-1} = -1$

et
$$x_2 = \frac{-\frac{1}{2} - \sqrt{\frac{9}{4}}}{2 \times \frac{-1}{2}} = \frac{-\frac{1}{2} - \frac{3}{2}}{-1} = \frac{-2}{-1} = 2$$

Donc
$$f'(x) = -\frac{1}{2}(x+1)(x-2)$$

2. Dresser le tableau de variations de f sur $]-\infty;+\infty[$. (Ne pas calculer les images).

On sait que $f'(x) = -\frac{1}{2}(x-1)(x+2)$ d'après la question précédente

On peut en déduire le tableau de signe

x	$-\infty$		-1		2		+∞
$-\frac{1}{2}$		_		_		_	
x-1		-	0	+		+	
<i>x</i> + 2		_		_	0	+	
signe		_	0		0	_	
signe de $f'(x)$			U				

On en déduit donc le varaitaions de la fonctin f

x	$-\infty$		-1		2		+∞
signe							
$\operatorname{de} f'(x)$		_	0	+	0	_	
variations					$\rightarrow f(2)$		
de f		-	f(-1)		J		→

(Đ)

Exercice 2.

- 1. Résoudre dans \mathbb{R} l'équation $e^{x^2-8} = e$
- 2. Résoudre dans \mathbb{R} l'équation $e^{\frac{1}{2}-x} = -e^{-x}$

Correction

1. Résoudre dans \mathbb{R} l'équation : $e^{x^2-8} = e$

$$e^{x^2-8} = e \iff e^{(x-5)x} = e^1$$

$$\iff x^2 - 8 = 1$$

$$\iff x^2 - 9 = 0$$

$$\iff (x-3)(x+3) = 0$$

$$\iff x = 3 \text{ ou } x = -3$$

Donc
$$\mathscr{G} = \{-3;3\}$$

2. Résoudre dans \mathbb{R} l'équation $e^{\frac{1}{2}-x} = -e^{-x}$

Pour tout $x \in \mathbb{R}$, et $e^{-x} > 0$ donc $-e^{-x} < 0$. Or $e^{\frac{1}{2}-x} > 0$, donc il n'y a pas de solution : $\mathscr{G} = \emptyset$

Exercice 3. 1. Simplifier l'expression $\frac{e^{x(x+1)}}{e^{x^2+3x-5}}$

2. Résoudre l'inéquation
$$\frac{e^{x(x+1)}}{e^{x^2+3x-5}} \le 1$$

Correction

1. Simplifier l'expression
$$\frac{e^{x(x+1)}}{e^{x^2+3x-5}}$$
$$\frac{e^{x(x+1)}}{e^{x^2+3x-5}} = e^{x(x+1)-(x^2+3x-5)} = e^{x^2+x-x^2-3x+5} = e^{-2x+5}$$

2. Résoudre l'inéquation
$$\frac{e^{x(x+1)}}{e^{x^2+3x-5}} \le 1$$

$$\frac{e^{x(x+1)}}{e^{x^2+3x-5}} \le 1 \iff e^{-2x+5} \le e^0$$

$$\iff -2x+5 \le 0$$

$$\iff -2x \le -5$$

$$\iff x \ge \frac{5}{2} \qquad (car - 2 < 0)$$

Donc
$$\mathcal{S} = \left[\frac{5}{2}; +\infty\right[$$

Exercice 4. 1. Déterminer les variations de la fonction h définie sur \mathbb{R} par $h(x) = (4-3x)e^x$.

2. Déterminer l'équation de la tangente à la courbe de *h* au point d'abscisse 0.

Correction

- 1. Déterminer les variations de la fonction h définie sur \mathbb{R} par $h(x) = (4-3x)e^x$.
 - Calcul de h'(x).

On a
$$h(x) = (4 - 3x) e^x$$

Donc la fonction h est dérivable sur $\mathbb R$ comme produit de fonctions dérivables sur $\mathbb R$

On note
$$h = uv$$
 avec $u(x) = 4 - 3x$ et $v(x) = e^x$ d'où $u'(x) = -3$ et $v'(x) = e^x$.

On en déduit que h' = u'v + v'u

D'où
$$h'(x) = -3e^x + (4-3x)e^x = (-3+4-3x)e^x = (1-3x)e^x$$

• Signe de h'(x) et variations de h.

Pour tout réel x, $e^x > 0$, donc le signe de h'(x) est le même que celui de 1 - 3x

x	$-\infty$		$\frac{1}{3}$		+∞
signe de		+	0	_	
1-3x		'			
signe			0	_	
de h'(x)		+			
variations			$\rightarrow h\left(\frac{1}{3}\right)$		
de h			→ "(3) ·		→

2. Déterminer l'équation de la tangente à la courbe de h au point d'abscisse 0.

$$T_0: y = h'(0)(x-0) + h(0)$$

Or
$$h'(0) = (1 - 3 \times 0)e^0 = 1$$
, et $h(0) = (4 - 3 \times 0)e^0 = 4$

Donc
$$T_0: y = x + 4$$