

Exercice 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = -\frac{x^3}{6} + \frac{x^2}{4} + x + \frac{1}{6}$

- 1. Calculer et **factoriser** f'(x).
- 2. Dresser le tableau de variations de f sur $]-\infty;+\infty[$. (Ne pas calculer les images).
- 3. Déterminer l'équation de la tangente \mathcal{T} à la courbe représentative de f au point d'abscisse -2.

Correction

1. On sait que
$$f(x) = -\frac{x^3}{6} + \frac{x^2}{4} + x + \frac{1}{6}$$

Donc la fonction f est dérivable sur \mathbb{R} comme fonction polynomiale

Alors
$$f'(x) = -3 \times \frac{x^2}{6} + 2 \times \frac{x}{4} + 1 = -\frac{1}{2}x^2 + \frac{1}{2}x + 1$$

C'est un polynôme de degré 2, on calcule son discriminant

$$\Delta = b^2 - 4ac = \left(\frac{1}{2}\right)^2 - 4 \times \left(-\frac{1}{2}\right) \times 1 = \frac{1}{4} + 2 = \frac{9}{4}$$

Ainsi
$$f'(x)$$
 a deux racines : $x_1 = \frac{-\frac{1}{2} + \sqrt{\frac{9}{4}}}{2 \times \frac{-1}{2}} = \frac{-\frac{1}{2} + \frac{3}{2}}{-1} = \frac{1}{-1} = -1$

et
$$x_2 = \frac{-\frac{1}{2} - \sqrt{\frac{9}{4}}}{2 \times \frac{-1}{2}} = \frac{-\frac{1}{2} - \frac{3}{2}}{-1} = \frac{-2}{-1} = 2$$

Donc
$$f'(x) = -\frac{1}{2}(x+1)(x-2)$$

2. Dresser le tableau de variations de f sur $]-\infty;+\infty[$. (Ne pas calculer les images).

On sait que $f'(x) = -\frac{1}{2}(x-1)(x+2)$ d'après la question précédente

On peut en déduire le tableau de signe

x	$-\infty$		-1		2		+∞
$-\frac{1}{2}$		_		_		_	
x-1		_	0	+		+	
x+2		-		_	0	+	
signe		_	Ò		0	_	
signe de $f'(x)$							

On en déduit donc le varaitaions de la fonctin f

j							
x	$-\infty$		-1		2		+∞
signe							
signe de $f'(x)$		_	Ų	+	Ų	_	
variations					$\rightarrow f(2)$		
de f			f(-1)		, , , ,		\

3. L'équation de la tangente \mathcal{T} à la courbe représentative de f au point d'abscisse -2 a pour équa-

tion
$$y = f'(-2)(x - (-2)) + f(-2)$$
 c'est à dire $y = f'(-2)(x + 2) + f(-2)$

Avec
$$f(-1) = -\frac{(-2)^3}{6} + \frac{(-2)^2}{4} + (-2) + \frac{1}{6} = \frac{8}{6} + \frac{4}{4} + (-2) + \frac{1}{6} = \frac{4}{3} - 1 + \frac{1}{6} = \frac{8 - 6 + 1}{6} = \frac{3}{6} = \frac{1}{2}$$

$$f'(-1) = -\frac{1}{2}(-2)^2 + \frac{1}{2} \times (-2) + 1 = -2 - 1 + 1 = -2$$

d'où
$$(\mathcal{T})$$
: $y = -2(x+2) + \frac{1}{2}$

$$(\mathcal{F}): y = -2x - 4 + \frac{1}{2}$$

$$(\mathcal{T}): y = -2x - 4 + \frac{1}{2}$$
Donc
$$(\mathcal{T}): y = -2x - \frac{7}{2}$$

Exercice 2.

- 1. Résoudre dans \mathbb{R} l'équation : $e^{(x-5)x} = 1$
- 2. Résoudre dans \mathbb{R} l'équation $e^{6-x} = -1$
- 3. Résoudre l'inéquation $e^{-6x+5} \le e$

Correction

1. Résoudre dans \mathbb{R} l'équation : $e^{(x-5)x} = 1$

$$e^{(x-5)x} = 1 \iff e^{(x-5)x} = e^x 0$$

$$\iff$$
 $(x-5)x=0$

$$\iff$$
 $x = 5$ ou $x = 0$

Donc
$$\mathscr{S} = \{5; 0\}$$

2. Résoudre dans \mathbb{R} l'équation $e^{6-x} = -1$

Pour tout
$$x \in \mathbb{R}$$
, $e^{6-x} > 0 > -1$

Donc il n'y a pas de solution : $\mathscr{S} = \emptyset$

3. Résoudre l'inéquation $e^{-6x+5} \le e$

$$e^{-6x+5} \le e \iff e^{-6x+5} \le e^1$$

$$\iff$$
 $-6x + 5 \le 1$

$$\iff$$
 $-6x \le -4$

$$\iff x \ge \frac{-4}{-6} \qquad (\text{car} - 3 < 0)$$

$$\iff x \ge \frac{2}{3}$$

$$\iff x \ge \frac{2}{3}$$

$$\mathcal{S} = \begin{bmatrix} 2 \\ -\frac{1}{2}; +\infty \end{bmatrix}$$

Rappel sur les fonctions

Exercice 3. Déterminer les variations de la fonction h définie sur \mathbb{R} par $h(x) = (4-3x)e^x$.

Correction

• Calcul de h'(x).

On a
$$h(x) = (4-3x) e^x$$

Donc la fonction h est dérivable sur $\mathbb R$ comme produit de fonctions dérivables sur $\mathbb R$

On note
$$h = uv$$
 avec $u(x) = 4 - 3x$ et $v(x) = e^x$ d'où $u'(x) = -3$ et $v'(x) = e^x$.

On en déduit que h' = u'v + v'u

D'où
$$h'(x) = -3e^x + (4-3x)e^x = (-3+4-3x)e^x = (1-3x)e^x$$

• Signe de h'(x) et variations de h.

Pour tout réel x, $e^x > 0$, donc le signe de h'(x) est le même que celui de 1 - 3x

x	$-\infty$		$\frac{1}{3}$		+∞
signe de			0	_	
1-3x		Т	U		
signe			0	_	
de h'(x)		Т	U		
variations	-		$h\left(\frac{1}{3}\right)$		
de h			* "(3)		→