

Problèmes tirés de E3C

Exercice 1.

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 7x^2 + 11x - 19$.

On note \mathscr{C} sa courbe représentative dans un repère $\left(0; \overrightarrow{\iota}, \overrightarrow{\jmath}\right)$ du plan.

- 1. On note f' la fonction dérivée de la fonction f sur \mathbb{R} . Déterminer l'expression de f'(x).
- 2. Résoudre dans \mathbb{R} l'inéquation $3x^2 + 14x + 11 > 0$.

En déduire le tableau de variations de la fonction f.

- 3. Déterminer l'équation réduite de la tangente à la courbe $\mathscr C$ au point d'abscisse 0.
- 4. Justifier que 1 est solution de $x^3 + 7x^2 + 11x 19 = 0$. Vérifier que pour tout réel $x: f(x) = (x-1)(x^2 + 8x + 19)$.
- 5. Étudier le signe de la fonction f et en dresser le tableau de signes sur \mathbb{R} .

Exercice 2.

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x} + 6e^x - 8x - 4$.

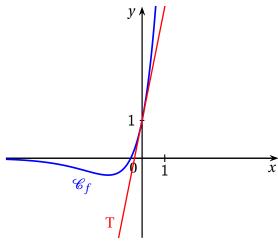
Dans le plan rapporté à un repère orthogonal, on considère :

- \mathscr{C}_f la courbe représentative de la fonction f ;
- \mathscr{D} la droite d'équation cartésienne y = -8x 4.
- 1. Montrer que, pour tout $x \in \mathbb{R}$, $f'(x) = 2(e^x 1)(e^x + 4)$.
- 2. Étudier le signe de f'(x) sur \mathbb{R} .
- 3. Dresser le tableau de variations de la fonction f sur \mathbb{R} .
- 4. En déduire le signe de f(x) sur \mathbb{R} .
- 5. La courbe \mathscr{C}_f et la droite \mathscr{D} ont-elles un point commun? Justifier.

0

Exercice 3.

Soit f la fonction définie sur \mathbb{R} par $f(x) = (2x+1)e^x$. Sur le graphique ci-dessous, sont tracées la courbe \mathscr{C}_f représentative de la fonction f, et la droite T, tangente à cette courbe au point d'abscisse 0.



- 1. Déterminer les coordonnées des éventuels points d'intersection de la courbe \mathscr{C}_f avec laxe des abscisses.
- 2. Montrer que, pour tout x réel, que $f'(x) = (2x+3)e^x$.
- 3. Dresser le tableau de signes de f'(x) sur \mathbb{R} , puis préciser les variations de f sur \mathbb{R} .
- 4. (a) Déterminer l'équation réduite de la tangente T.
 - (b) Justifier graphiquement que, pour tout réel x, on a : $(2x+1)e^x \ge 3x+1$.

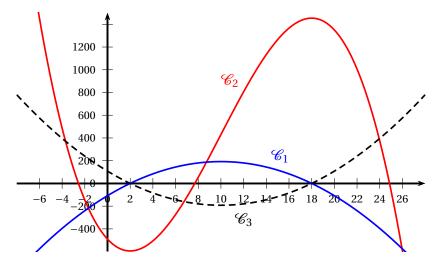
Exercice 4.

Soit *h* la fonction définie sur [0; 26] par $h(x) = -x^3 + 30x^2 - 108x - 490$.

1. Soit h' la fonction dérivée de h.

Exprimer h'(x) en fonction de x.

- 2. On note $\mathscr C$ la courbe représentative de h et $\mathscr C'$ celle de h'.
 - (a) Identifier $\mathscr C$ et $\mathscr C'$ sur le graphique orthogonal ci-dessous parmi les trois courbes $\mathscr C_1$, $\mathscr C_2$ et $\mathscr C_3$ proposées.
 - (b) Justifier le choix pour \mathscr{C}' .



- 3. Soit (T) la tangente à $\mathscr C$ au point A d'abscisse 0. Déterminer son équation réduite.
- 4. Étudier le signe de h'(x) puis dresser le tableau de variation de la fonction h sur [0; 26].