(**5**)

Exercices: Fonction exponentielle

I Calculs algébriques

Exercice 1. Simplifier les expressions suivantes :

1.
$$e^3 e^4$$

3.
$$(e^4)^3 e^4$$

2.
$$\frac{e^5e^{-3}}{e^{-2}}$$

4.
$$\frac{e - \sqrt{e}}{\sqrt{e} - 1}$$

5.
$$(e^2 + e^{-2})(e^2 - e^{-2})$$

6.
$$\sqrt{(e^2+1)^2-(e^2-1)^2}$$

Exercice 2. Simplifier les expressions suivantes :

1.
$$e^{x}e^{-x}$$

3.
$$e^x (e^x + e^{-x})$$

5.
$$(e^{5x})^2$$

2.
$$ee^{-x}$$

4.
$$\sqrt{e^{-2x}}$$

6.
$$e^{9x} - 2(e^{3x})^3$$

II Équations - Inéquations

Exercice 3. Résoudre les équations suivantes dans $\mathbb R$:

1.
$$\exp(x) = e$$

3.
$$e^{x^2+x}=1$$

5.
$$e^x + e^{-x} = 0$$

2.
$$\exp(-x) = 1$$

4.
$$e^x - e^{-x} = 0$$

6.
$$e^{3x+1} = e^{-2x+3}$$

Exercice 4. Résoudre les inéquations suivantes dans $\mathbb R$:

1.
$$e^{2x-1} > e^x$$

3.
$$e^{-x} > 0$$

5.
$$e^{2x} - 1 \ge 0$$

2.
$$e^x < 1$$

4.
$$e^x - e^{-x} > 0$$

6.
$$xe^{-x} - 3e^{-x} < 0$$

Exercice 5.

- 1. Déterminer les racines du polynôme : $P(X) = X^2 + 4X 5$.
- 2. En déduire les solutions de l'équation $e^{2x} + 4e^x = 5$.
- 3. Résoudre les équations suivantes :

(a)
$$e^{2x} + e^x - 2 = 0$$

(b)
$$e^{2x+1} + e^{x+1} - 2e = 0$$

(c)
$$e^x - 2e^{-x} + 1 = 0$$

Exercice 6. Résoudre dans \mathbb{R} .

1.
$$e^{x^2+2} = \frac{e^{2x}}{e^{x^2+2}}$$

2.
$$2e^{2x} + 5e^x + 3 = 0$$

3.
$$e^{x^2} + 1 \le 2$$

9

III Dérivées

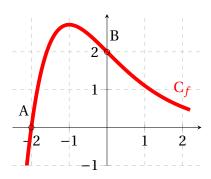
Exercice 7. Soit une fonction f définie sur \mathbb{R} par la donnée de f(x). On admet que f est dérivable sur \mathbb{R} . Déterminer une expression de f'(x).

1.
$$f(x) = e^{-x}$$

3.
$$f(x) = xe^{x+1}$$

5.
$$f(x) = (x^2 + 1)e^{3x+1}$$

2.
$$f(x) = e^{x^2 + x}$$


4.
$$f(x) = e^{x^2 + 1}$$

6.
$$f(x) = \frac{1 - e^{-2x}}{e^x}$$

Exercice 8. Utilisation d'une fonction auxiliaire

- 1. On définit sur \mathbb{R} la fonction $g: x \mapsto x^2 e^x 1$.
 - (a) Déterminer une expression de la dérivée de g.
 - (b) Donner le tableau de signes de cette dérivée sur \mathbb{R} .
 - (c) En déduire le tableau de variations de g sur \mathbb{R} .
 - (d) Donner, à l'aide d'un tableau de valeurs, une valeur approchée à 0,1 près de la solution de léquation g(x) = 0.
 - (e) En déduire le tableau de signes de g(x) sur \mathbb{R} .
- 2. On considère la fonction $f: x \mapsto e^x + \frac{1}{x}$, définie et dérivable sur \mathbb{R}^* .
 - (a) Expliquer pourquoi la fonction f nest pas définie en 0.
 - (b) Déterminer une expression de la dérivée de f.
 - (c) Donner le tableau de signes de cette dérivée sur \mathbb{R}^* .
 - (d) En déduire le tableau de variations de f sur \mathbb{R}^* .

Exercice 9. Une courbe $\mathscr C$ qui passe par les points A(-2;0) et B(0;2) représente une fonction f définie sur $\mathbb R$ par : $f(x) = (ax+b)e^{-x}$ où a et b sont des réels.

- 1. À l'aide du graphique, déterminer a et b en justifiant.
- 2. En déduire le tableau de variation de f.