Elements de correction des exercices : Fonction exponentielle

Calculs algébriques

Exercice 1. Simplifier les expressions suivantes :

1 $e^{3}e^{4}$

2. $\frac{e^5e^{-3}}{e^{-2}}$

4. $\frac{e-\sqrt{e}}{\sqrt{e}-1}$

Correction

1. e^7 2. e^4

3. e^{16}

4. \sqrt{e}

5. $e^4 - e^{-4}$

6. 2*e*

Exercice 2. Simplifier les expressions suivantes :

1. $e^{x}e^{-x}$

3. $e^{x}(e^{x}+e^{-x})$

5. $(e^{5x})^2$

2. ee^{-x}

6. $e^{9x} - 2(e^{3x})^3$

Correction

1. 1 2. e^{1-x}

3. $e^{2x} + 1$

5. e^{10x}

6. $-e^{9x}$

Équations - Inéquations

Exercice 3. Résoudre les équations suivantes dans \mathbb{R} :

1. $\exp(x) = e$

3. $e^{x^2+x}=1$

5. $e^x + e^{-x} = 0$

2. $\exp(-x) = 1$

4. $e^x - e^{-x} = 0$

6. $e^{3x+1} = e^{-2x+3}$

Correction

 $3. \{-1;0\}$

5. Ø

4. {0}

6. {2/5}

Exercice 4. Résoudre les inéquations suivantes dans \mathbb{R} :

1.
$$e^{2x-1} > e^x$$

3.
$$e^{-x} > 0$$

5.
$$e^{2x} - 1 \ge 0$$

2.
$$e^x < 1$$

4.
$$e^x - e^{-x} > 0$$

6.
$$xe^{-x} - 3e^{-x} < 0$$

Correction

5.
$$[0; +\infty[$$

2.
$$1-\infty : 0$$

4.
$$]0; +\infty[$$

6.]
$$-\infty$$
; 3[

Exercice 5.

1. Déterminer les racines du polynôme : $P(X) = X^2 + 4X - 5$.

2. En déduire les solutions de l'équation $e^{2x} + 4e^x = 5$.

3. Résoudre les équations suivantes :

(a)
$$e^{2x} + e^x - 2 = 0$$

(b)
$$e^{2x+1} + e^{x+1} - 2e = 0$$

(c)
$$e^x - 2e^{-x} + 1 = 0$$

Correction

1. Deux racines : -5 et 1.

2. $e^{2x} + 4e^x = 5 \Leftrightarrow (e^x + 5)(e^x - 1) = 0$.

Seule le second facteur peut être nul. $\mathcal{S} = \{0\}$.

3. (a) $e^{2x} + e^x - 2 = 0 \Leftrightarrow (e^x + 2)(e^x - 1)$. Cette équations n'a qu'une solution : 0.

(b) Équation équivalente (on divise par e).

(c) Équation équivalente (on multiplie par e^x).

Exercice 6. Résoudre dans \mathbb{R} .

1.
$$e^{x^2+2} = \frac{e^{2x}}{e}$$

2.
$$2e^{2x} + 5e^x + 3 = 0$$

3.
$$e^{x^2} + 1 \le 2$$

Correction

1. {1}

2. Ø

3. {0}

Ш Dérivées

Exercice 7. Soit une fonction f définie sur \mathbb{R} par la donnée de f(x). On admet que f est dérivable sur \mathbb{R} . Déterminer une expression de f'(x).

1.
$$f(x) = e^{-x}$$

3.
$$f(x) = xe^{x+1}$$

5.
$$f(x) = (x^2 + 1)e^{3x+1}$$

2.
$$f(x) = e^{x^2 + x}$$

4.
$$f(x) = e^{x^2 + 1}$$

6.
$$f(x) = \frac{1 - e^{-2x}}{e^x}$$

Correction

1.
$$f'(x) = -e^{-x}$$

3.
$$f'(x) = (x+1)e^{x+1}$$

5.
$$f'(x) = (3x^2 + 2x + 3)e^{3x+1}$$

1.
$$f'(x) = -e^{-x}$$

2. $f'(x) = (2x+1)e^{x^2+x}$
3. $f'(x) = (x+1)e^{x+1}$
4. $f'(x) = 2xe^{x^2+1}$

4.
$$f'(x) = 2xe^{x^2+1}$$

6.
$$f'(x) = \frac{3 - e^{2x}}{e^{3x}}$$

Exercice 8. Utilisation d'une fonction auxiliaire

- 1. On définit sur \mathbb{R} la fonction $g: x \mapsto x^2 e^x 1$.
 - (a) Déterminer une expression de la dérivée de g.
 - (b) Donner le tableau de signes de cette dérivée sur ℝ.
 - (c) En déduire le tableau de variations de g sur \mathbb{R} .
 - (d) Donner, à l'aide d'un tableau de valeurs, une valeur approchée à 0,1 près de la solution de léquation g(x) = 0.
 - (e) En déduire le tableau de signes de g(x) sur \mathbb{R} .
- 2. On considère la fonction $f: x \mapsto e^x + \frac{1}{x}$, définie et dérivable sur \mathbb{R}^* .
 - (a) Expliquer pourquoi la fonction f nest pas définie en 0.
 - (b) Déterminer une expression de la dérivée de f.
 - (c) Donner le tableau de signes de cette dérivée sur \mathbb{R}^* .
 - (d) En déduire le tableau de variations de f sur \mathbb{R}^* .

Correction

- 1. On définit sur \mathbb{R} la fonction $g: x \mapsto x^2 e^x 1$.
 - (a) La fonction g est dérivable sur $\mathbb R$ comme différence d'un produit de fonctions déribales sur $\mathbb R$ et d'un entier.

On a
$$g = u \times v - 1$$
 alors $g' = u'v + uv' - 0$
avec $u(x) = x^2$ et $u'(x) = 2x$ et $v(x) = e^x$ et $v'(x) = e^x$

D'où
$$g'(x) = x^2 e^x + 2x e^x = (x^2 + 2x) e^x = x(x+2)e^x$$
.
Donc $g'(x) = x(x+2)e^x$

(b) Comme $g'(x) = x(x+2)e^x$, on en déduit son signe sur \mathbb{R}

x	$-\infty$		-2		0		+∞
х		_		+	0	+	
x + 2		_	0	_		+	
e ^x		+		+		+	
g'(x)		+	0	_	0	+	

(c) D'après le tableau de signe précédent, on en déduit le tableau de variations de la fonction g sur $\mathbb R$:

x	$-\infty$		-2		0		+∞
g'(x)		+	0	_	0	+	
Variation de g		,,	$4e^{-2}-1$		-1		<i></i>

- (d) D'après le tableau de valeurs, on trouve que g(x)=0 a une seule solution α et à la calculatrice : $g(0,7)\approx -0.01326$ et $g(0,8)\approx 0.4243$ Donc $\alpha\approx 0.7$.
- (e) On en déduit le signe de g(x)

х	$-\infty$		α		+∞
Signe de g		_	0	+	

- 2. On considère la fonction $f: x \mapsto e^x + \frac{1}{x}$, définie et dérivable sur \mathbb{R}^* .
 - (a) f n'est pas définie en 0 car $\frac{1}{r}$ n'est pas défini en 0.
 - (b) On a $f(x) = e^x + \frac{1}{x}$

Alors la fonction f est dériable sur \mathbb{R}^* comme somme de fonctions dérivable sur \mathbb{R}^* D'où $f'(x) = e^x - \frac{1}{x^2} = \frac{x^2 e^x - 1}{x^2} = \frac{g(x)}{x^2}$.

Donc
$$f'(x) = \frac{g(x)}{x^2}$$

(c) On sait que $f'(x) = \frac{g(x)}{x^2}$ Comme pour tout $xin\mathbb{R}^*$, $x^2 > 0$ Alors f'(x) est du signe de g(x)

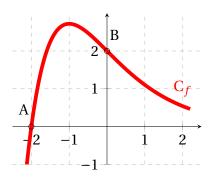
D'où

x	$-\infty$	0	α	+∞
f'(x)	_	_	0	+

(d) D'après le tableau de signe précédent, on en déduit le tableau de variations de la fonction fsur \mathbb{R}^* :

	х	$-\infty$) (α +∞
	f'(x)	_	- (0 +
V	ariation de f		e^{α}	$+\frac{1}{\alpha}$

Exercice 9. Une courbe $\mathscr C$ qui passe par les points A(-2;0) et B(0;2) représente une fonction f définie sur \mathbb{R} par : $f(x) = (ax + b)e^{-x}$ où a et b sont des réels.



- 1. À l'aide du graphique, déterminer a et b en justifiant.
- 2. En déduire le tableau de variation de f.

Correction

1. D'après les coordonnées des points A et B, on obtient :

•
$$f(0) = 2 \iff (a \times 0 + b)e^{-0} = 2 \iff b = 2 \text{ donc } b = 2$$

$$f(0) = 2 \iff (a \times 0 + b)e^{-0} = 2 \iff b = 2 \text{ donc } b = 2$$

$$f(-2) = 0 \iff (a \times (-2) + 2)e^{+2} = 0 \iff -2a + 2 = 0 \iff a = 1$$

Donc
$$f(x) = (x+2)e^{-x}$$

2. On a
$$f(x) = (x+2)e^{-x}$$

Alors fonction f est dérivable sur $\mathbb R$ comme produit de fonctions déribales sur $\mathbb R$

On a
$$f = u \times v$$
 alors $f' = u'v + uv'$

avec
$$u(x) = x + 2$$
 et $u'(x) = 1$ et $v(x) = e^{-x}$ et $v'(x) = -e^{-x}$

D'où
$$f'(x) = e^{-x} + (x+2)(-e^{-x}) = (1-x-2)e^{-x} = -(1+x)e^{x}$$
.

Donc
$$f'(x) = (-1 - x)e^{-x}$$

Comme pour tout $x \in \mathbb{R}$, $e^{-x} > 0$

Alors f'(x) est du signe de -1-x

x	$-\infty$		-1		+∞
f'(x)		+	0	-	
f			e _		*