Elements de correction des exercices : Fonction exponentielle

Calculs algébriques

Exercice 1. Simplifier les expressions suivantes :

1.
$$\exp(3) \exp(5)$$

2.
$$\exp(-2) \exp(4)$$

3.
$$\frac{1}{\exp(-5)}$$

4.
$$(\exp(5))^3$$

Correction

Exercice 2. Simplifier les expressions suivantes :

1.
$$e^3 e^4$$

3.
$$\frac{e^5e^{-3}}{e^{-2}}$$

5.
$$(e^3)^{-2}e^5$$

2.
$$e^4e^{-4}$$

4.
$$(e^4)^3 e^4$$

6.
$$\frac{e - \sqrt{e}}{\sqrt{e} - 1}$$

Correction

3.
$$e^4$$

5.
$$e^{-1}$$

4.
$$e^{16}$$

6.
$$\sqrt{e}$$

Exercice 3. Simplifier les expressions suivantes :

1.
$$e^{x}e^{-x}$$

3.
$$ee^{-x}$$

5.
$$e^{x}(e^{x}+e^{-x})$$

7.
$$\sqrt{e^{-2x}}$$

2.
$$e^x e^{-x+1}$$

4.
$$(e^{-x})^2$$

$$6. \ \frac{\left(e^{x}\right)^{3}}{e^{2x}}$$

8.
$$\frac{e^{-4x}e}{(e^{-x})^2}$$

Correction

3.
$$e^{1-x}$$
4. e^{-2x}

5.
$$e^{2x} + 1$$

7.
$$e^{-x}$$

4.
$$e^{-2x}$$

8.
$$e^{-2x+1}$$

Exercice 4. Simplifier les expressions suivantes :

1.
$$(e^5 - e^4)^2 - (e^5 + e^4)^2$$

3.
$$\sqrt{(e^2+1)^2-(e^2-1)^2}$$

5.
$$(e^{5x})^2$$

2.
$$(e^2 + e^{-2})(e^2 - e^{-2})$$

4.
$$e^{2x+1} \times e^{-x}$$

6.
$$e^{9x} - 2(e^{3x})^3$$

Correction

1.
$$-4e^9$$

1.
$$-4e^9$$
2. $e^4 - e^{-4}$

4.
$$e^{2(x+1)}$$

5.
$$e^{10x}$$

6.
$$-e^{9x}$$

П **Équations - Inéquations**

Exercice 5. Résoudre les équations suivantes dans \mathbb{R} :

1.
$$\exp(x) = e$$

4.
$$e^{x^2+x}=1$$

7.
$$e^x + e^{-x} = 0$$

2.
$$\exp(-x) = 1$$

5.
$$e^x - e^{-x} = 0$$

8.
$$e^{3x+1} = e^{-2x+3}$$

3.
$$\exp(2x-1) = e$$

6.
$$e^{x^2+5} = (e^{x+2})^2$$

9.
$$e^{2x} - 1 = 0$$

Correction

Exercice 6. Résoudre les inéquations suivantes dans \mathbb{R} :

1.
$$\exp(x) < e$$

4.
$$e^x < 1$$

7.
$$e^x - e^{-x} > 0$$

2.
$$\exp(-x) \ge 1$$

5.
$$e^{-x} > 0$$

8.
$$e^{2x} - 1 \ge 0$$

3.
$$e^{2x-1} > e^x$$

6.
$$e^{-x} > 1$$

9.
$$xe^{-x} - 3e^{-x} < 0$$

Correction

1.
$$1-\infty: e$$

4.]
$$-\infty$$
; 0[

7.
$$]0; +\infty[$$

8.
$$[0; +\infty[$$

6.]
$$-\infty$$
; 0[

9.
$$]-\infty$$
; 3[

1. Déterminer les racines du polynôme : $P(X) = X^2 + 4X - 5$. Exercice 7.

- 2. En déduire les solutions de l'équation $e^{2x} + 4e^x = 5$.
- 3. Résoudre les équations suivantes :

(a)
$$e^{2x} + e^x - 2 = 0$$

(b)
$$e^{2x+1} + e^{x+1} - 2e = 0$$

(c)
$$e^x - 2e^{-x} + 1 = 0$$

Correction

1. Deux racines : -5 et 1.

2.
$$e^{2x} + 4e^x = 5 \Leftrightarrow (e^x + 5)(e^x - 1) = 0$$
.
Seule le second facteur peut être nul. $\mathscr{S} = \{0\}$.

3. (a)
$$e^{2x} + e^x - 2 = 0 \Leftrightarrow (e^x + 2)(e^x - 1)$$
. Cette équations n'a qu'une solution : 0.

- (b) Équation équivalente (on divise par e).
- (c) Équation équivalente (on multiplie par e^x).

Exercice 8. Résoudre sur \mathbb{R} les inéquations suivantes :

1.
$$\frac{e^x + 3}{e^x - 1} > 0$$

2.
$$-e^{2x} - e^x + 2 > 0$$

3.
$$e^{2x} + 2e^x - 3 \ge 0$$

4.
$$e^{2x} + e^x - 2 < 0$$

Correction

1.
$$]0; +\infty|$$

3.
$$[0; +\infty[$$

4.]
$$-\infty$$
; 0[

Exercice 9. Résoudre dans R.

1.
$$e^{x^2+2} = \frac{e^{2x}}{e}$$

2.
$$2e^{2x} + 5e^x + 3 = 0$$

3.
$$e^x + e^{-x} > \sqrt{e} + \frac{1}{\sqrt{e}}$$

4.
$$e^{x^2} + 1 \le 2$$

Correction

3.
$$\left\{-\frac{1}{2}; \frac{1}{2}\right\}$$

Ш Dérivées

Exercice 10. Soit une fonction f définie sur \mathbb{R} par la donnée de f(x). On admet que f est dérivable sur \mathbb{R} . Déterminer une expression de f'(x).

1.
$$f(x) = e^{-x}$$

2.
$$f(x) = \frac{x}{2}e^{\frac{x}{2}}$$

3.
$$f(x) = e^{x^2 + x}$$

4.
$$f(x) = xe^{x+1}$$

5.
$$f(x) = e^{x^2 + 1}$$

6.
$$f(x) = (x^2 + 1)e^{3x+1}$$

7.
$$f(x) = \frac{1 - e^{-2x}}{e^x}$$

8.
$$f(x) = \frac{1 - e^{-2x}}{1 + e^{2x}}$$

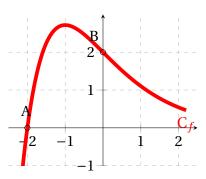
Correction

1.
$$f'(x) = -e^{-x}$$

2.
$$f'(x) = \frac{x+2}{4}e^{\frac{x^2}{2}}$$

3.
$$f'(x) = (2x+1)e^{x^2+x}$$

4.
$$f'(x) = (x+1)e^{x+1}$$


5.
$$f'(x) = 2xe^{x^2+1}$$

1.
$$f'(x) = -e^{-x}$$

2. $f'(x) = \frac{x+2}{4}e^{\frac{x}{2}}$
3. $f'(x) = (2x+1)e^{x^2+x}$
4. $f'(x) = (x+1)e^{x+1}$
5. $f'(x) = 2xe^{x^2+1}$
6. $f'(x) = (3x^2+2x+3)e^{3x+1}$

7.
$$f'(x) = \frac{3 - e^{2x}}{e^{3x}}$$

8.
$$f'(x) = \frac{2(e^{-2x} - e^{2x} + 2)}{(1 + e^{2x})^2}$$

Exercice 11. Une courbe \mathscr{C} qui passe par les points A(-2; 0) et B(0; 2) représente une fonction f définie sur \mathbb{R} par : $f(x) = (ax + b)e^{-x}$ où a et b sont des réels.

- 1. À l'aide du graphique, déterminer a et b en justifiant.
- 2. En déduire le tableau de variation de f.

Correction

- 1. f(0) = 2 donc b = 2 et f(-2) = 0 donc a = 1.
- 2. $f(x) = (x+2)e^{-x}$ donc $f'(x) = -(x+1)e^{-x}$.

x	$-\infty$		-1		+∞
f'(x)		+	0	_	
f	$-\infty$		e		0