

Exercices de mise en route sur les fonctions

Exercice 1.

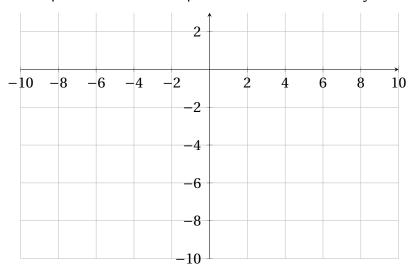
Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{3}x^3 - 3x^2 + 9x$.

- 1. Déterminer le sens de variation de f.
- 2. Déterminer l'équation de la tangente T à la courbe \mathscr{C}_f au point d'abscisse 0.

Exercice 2.

On considère la fonction f définie sur $]-\infty$; 2[par $: f(x) = \frac{x^2 - 4x + 8}{x - 2}.$

- 1. Résoudre f(x) = 0.
- 2. On note f', la fonction dérivée de f.
 - (a) Démontrer que pour tout réel x de $]-\infty$; $2[:f'(x)=\frac{x(x-4)}{(x-2)^2}$.
 - (b) Déterminer les variations de la fonction f.
- 3. Déterminer une équation de la tangente D à la courbe représentative de f au point d'abscisse 1.
- 4. Tracer la droite D et une esquisse de la courbe représentative de la fonction f dans le repère ci-dessous .



Exercice 3.

Un camion doit parcourir un trajet de 200 km, on suppose que sa vitesse (en km/h), noté x est constante. La consommation de carburant du camion est de $6 + \frac{x^2}{800}$ litres de gasoil par heure avec un prix du gasoil au litre de $1 \in$ et le chauffeur est payé $10 \in$ de l'heure.

- 1. Exprimer le temps de trajet t en fonction de x.
- 2. En déduire le coût en carburant sur l'ensemble du trajet en fonction de x puis le coût du chauffeur sur l'ensemble du trajet en fonction de x.
- 3. Montrer que le coût total du trajet en fonction de x est $C(x) = \frac{x}{4} + \frac{3200}{x}$.
- 4. Etudier les variations de la fonction C sur]0; $+\infty[$.
- 5. En déduire quelle doit à être la vitesse du camion pour que le coût total du trajet soit minimal

9

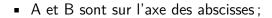
Exercice 4.

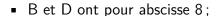
Partie A

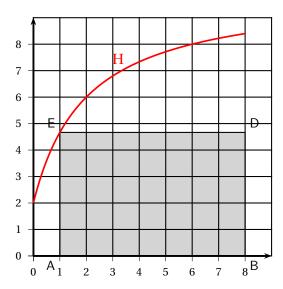
Étudier sur \mathbb{R} le signe de $P(x) = -10x^2 - 40x + 120$.

Partie B

On se place dans un plan muni d'un repère orthonormé. La courbe H représentée sur le graphique ci -dessous est l'ensemble des points de l'hyperbole d'équation : $h(x) = \frac{10x+4}{x+2}$ avec x appartenant à l'intervalle [0;8]. Pour toute abscisse x dans l'intervalle [0;8], on construit le rectangle ABDE comme indiqué sur la figure. On donne les informations suivantes :







L'objectif de ce problème est de déterminer la ou les valeurs éventuelles x de l'intervalle [0; 8] correspondant à un rectangle ABDE d'aire maximale.

- 1. Déterminer l'aire du rectangle ABDE lorsque x = 0.
- 2. Déterminer l'aire du rectangle ABDE lorsque x = 4.

On définit la fonction f qui à tout réel x de [0; 8], associe l'aire du rectangle ABDE.

3. Montrer que :
$$f(x) = \frac{-10x^2 + 76x + 32}{x+2}$$
.

4. Répondre au problème posé.