

Rappel sur les fonctions

I Nombre dérivé en a d'une fonction

Nombre dérivé en a d'une fonction

Soit f une fonction définie sur un intervalle I.

■ Pour tout nombre réel $a \in I$ non nul et tel que $(a+h) \in I$, on appelle taux d'accroissement de la fonction f en a, le nombre

$$\tau(h) = \frac{f(a+h) - f(a)}{h}$$

• On dit que la fonction f est **dérivable** en a, lorsque le taux d'accroissement $\tau(h)$ tend vers un nombre L lorsque h tend vers 0.

Ce nombre L, lorsqu'il existe, est appelé le nombre dérivé de f en a, et est noté f'(a):

$$f'(a) = \lim_{h \to 0} \tau(h) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = L$$

Le nombre dérivé f'(a), lorsqu'il existe, est le coefficient directeur de la tangente à la courbe de f au point d'abscisse a.

II Fonctions dérivées

Définition

Soit f une fonction définie sur un intervalle I.

- On dit que f est dérivable sur I si f admet un nombre dérivé en tout point de I, c'est-à-dire si pour tout $a \in I$, f'(a) existe.
- On appelle **fonction dérivée** de f la fonction notée f' qui, à tout x de I associe le nombre f'(x).

Dérivées des fonctions usuelles

Fonction <i>f</i>	Dérivée	f est définie sur	f est dérivable sur
f(x) = k (constante)	f'(x) = 0	R	\mathbb{R}
f(x) = x	f'(x) = 1	R	R
$f(x) = ax, \ a \in \mathbb{R}$	f'(x) = a	R	R
$f(x) = x^2$	f'(x) = 2x	R	R
$f(x) = x^n \ (n \in \mathbb{N})$	$f'(x) = nx^{n-1}$	R	R
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	$\mathbb{R}^* =]-\infty;0[\cup]0;+\infty[$	$\mathbb{R}^* =]-\infty;0[\cup]0;+\infty[$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	$\mathbb{R}_{+} = [0; +\infty[$	$\mathbb{R}_+^* =]0; +\infty[$
$f(x) = e^x$	$f'(x) = e^x$	R	R

Cours

Opérations sur les dérivées

u et v désignent deux fonctions quelconques, définies et dérivables sur un intervalle I.

Fonction	Dérivée	
$ku, k \in \mathbb{R}$	ku'	
u + v	u' + v'	
uv	u'v + uv'	
$\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$	
u^2	2u'u	
$u^n (n \in \mathbb{N})$	$nu'u^{n-1}$	
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$	
e^u	$u'e^u$	

III Equation de la tangente

Equation de la tangente

Soit f une fonction définie et dérivable sur un intervalle I, et $\alpha \in I$.

Alors, l'équation réduite de la tangente à la courbe représentative C_f de f au point d'abscisse α est :

$$y = f'(\alpha)(x - \alpha) + f(\alpha)$$

IV Applications de la dérivation

Sens de variation d'une fonction

Soit f une fonction dérivable sur un intervalle I.

- Si pour tout $x \in I$, f'(x) > 0, alors f est strictement croissante sur I.
- Si pour tout $x \in I$, f'(x) < 0, alors f est strictement décroissante sur I.
- Si pour tout $x \in I$, f'(x) = 0, alors f est constante sur I.

V Extrema d'une fonction

Extrema d'une fonction

Soit f une fonction définie sur un intervalle I.

- Un **extremum** est un minimum ou un maximum.
- f présente un **maximum local** $m = f(x_0)$

si il existe un intervalle $J \subset I$ tel que pour tout $x \in J$, $f(x) \le f(x_0)$.

- f présente un **minimum local** $m = f(x_0)$
 - si il existe un intervalle $J \subset I$ tel que pour tout $x \in J$, $f(x) \ge f(x_0)$.
- L'extremum est dit **global** lorsque J = I.

Tangente horizontale

Si $f(x_0)$ est un extremum local sur l'intervalle] a; b[, alors $f'(x_0) = 0$.

La courbe C_f représentative de la fonction f admet une tangente horizontale au point $(x_0; f(x_0))$.