

Fonction exponentielle

I Définition

Théorème 1

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1.

On appelle cette fonction : fonction exponentielle et on la note provisoirement exp .

Conséquences immédiates liées à la définition de la fonction exponentielle

- La fonction exponentielle, $exp: x \mapsto exp(x)$ est définie et dérivable sur \mathbb{R}
- exp'(x) = exp(x) pour tout $x \in \mathbb{R}$
- exp(0) = 1

Nombre d'Euler

- On pose exp(1) = e; on obtient $e \approx 2,718$, e est appelé le nombre d'Euler.
- On généralise à l'ensemble des nombres réels : $exp(x) = e^x$

Remarque : e^x se dit « exponentielle x » ou « e exposant n »

Histoire des mathématiques

Comme π , le nombre e est un nombre irrationnel, c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique.

Ses premières décimales sont : $e \approx 2,71828182845904523536028747135266249775724709369995957496...$

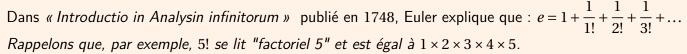
Le nombre e est également un nombre transcendant. On dit qu'un nombre est transcendant s'il n'est solution d'aucune équation à coefficients entiers.

Le nombre $\sqrt{2}$ par exemple, est irrationnel mais n'est pas transcendant puisqu'il est solution de l'équation $x^2=2$. Un tel nombre est dit « algébrique » .

Le premier à s'intéresser de façon sérieuse au nombre \emph{e} est le mathématicien suisse

Leonhard Euler (1707; 1783). C'est à lui que nous devons le nom de ce nombre.

Non pas qu'il s'agisse de l'initiale de son nom mais peut être car e est la première lettre du mot exponentiel.



Par cette formule, il obtient une estimation de e avec 18 décimales exactes.

Nous devons aussi à Euler la démonstration de l'irrationalité de e

II Etude de la fonction exponentielle

Variations

La fonction exponentielle f tel que $f(x) = exp(x) = e^x$

- f est définie et dérivable sur $\mathbb R$
- f est strictement positive sur $\mathbb R$
- $f'(x) = exp(x) = e^x$
- f' est strictement positive sur $\mathbb R$ donc f est strictement croissante sur $\mathbb R$
- Tableau de variation :

x	$-\infty$	+∞
exp'(x)	+	
Variation de <i>exp</i>	0	+∞

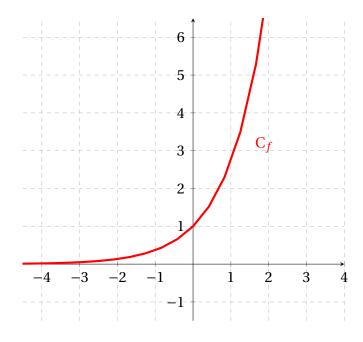
Démonstration :

La fonction f est définie, dérivable et strictement positive sur $\mathbb R$

Alors
$$f'(x) = exp(x) = e^x > 0$$

Donc la fonction exponentielle est strictement croissante sur \mathbb{R} .

Courbe représentative :



III Propriétés de la fonction exponentielle

Conséquences liées à cette nouvelle notation

- $e^0 = 1$ et $e^1 = e$
- Pour tous nombres a et b , $e^{a+b}=e^a\times e^b$ $e^{-a}=\frac{1}{e^a}$ $e^{a-b}=\frac{e^a}{e^b}$
- Pour tout nombre a , et pour tout entier relatif n , $(e^a)^n = e^{a \times n}$

Remarque : La fonction exponentielle transforme les sommes en produit

Exemples : Simplifier les expressions :	$\frac{(e^x)^2 \times e^x}{e^{4x}} \qquad ,$	$(e^x + e^{-x})^2 - (e^x + e^{-x})^2$	$(e^x - e^{-x})^2$ et	$(e^x + e^{-x})^2 + (e^x - e^{-x})^2$

(**9**)

IV Equations - Inéquations

La fonction exponentielle f tel que $f(x) = exp(x) = e^x$

- Pour tous réels a et b , a=b est équivalent à $e^a=e^b$
- Pour tous réels a et b , $a \le b$ est équivalent à $e^a \le e^b$

<u>Démonstration</u>:

Raisonnement par l'absurde

Si a=b alors $e^a=e^b$ et réciproquement si $e^a=e^b$ et on suppose $a\neq b$ avec a< b , comme la fonction exponentielle est strictement croissante sur $\mathbb R$ alors $e^a< e^b$

ce qui contredit l'hypothèse donc a = b.

ullet Cela découle du fait que la fonction exponentielle est strictement croissante sur ${\mathbb R}$

Exemples:

• Résoudre dans \mathbb{R} l'équation $e^{-5x+1} = 1$.

• Résoudre dans \mathbb{R} l'équation $e^{2x} = 0$.

•	Résoudre dans \mathbb{R} l'équation $e^{x^2}=e^4$.
•	Résoudre dans \mathbb{R} l'inéquation $e^{-5x+1} > 1$
	Résoudre dans \mathbb{R} l'équation $e^{x^2-3x} \leq e^{-2}$

V Fonctions de la forme e^u

Propriétés (admises)

Soit u une fonction définie sur un intervalle I.

On considère la composée de la fonction u suivie de la fonction exponentielle : $x \mapsto u(x) \mapsto e^{u(x)}$.

On note e^u cette composée.

Par conséquent :

- l'ensemble de définition de la fonction e^u est le même que celui de u
- Soit u une fonction dérivable sur un intervalle I de \mathbb{R} , alors e^u est dérivable sur I et $(e^u)' = u' \times e^u$
- La fonction e^u a le même sens de variation que la fonction u

Remarque : Soit la fonction f définie sur \mathbb{R} par $f(x) = e^{ax+b}$ alors sa dérivée est $f'(x) = ae^{ax+b}$

Exemples : Dériver les fonctions f, g, h et k sur les intervalles indiqués.

• $f(x) = e^{-x} \operatorname{sur} \mathbb{R}$

On remarque que $f=e^u$ avec u dérivable sur $\mathbb R$ avec $u(x)=\dots$ et $u'(x)=\dots$ Donc la fonction f est dérivable sur $\mathbb R$ et $f'(x)=\dots$

• $g(x) = e^{3x+4} \operatorname{sur} \mathbb{R}$

On remarque que $g=e^u$ avec u dérivable sur $\mathbb R$ avec $u(x)=\dots$ et $u'(x)=\dots$ Donc la fonction g est dérivable sur $\mathbb R$ et $g'(x)=\dots$

• $h(x) = e^{1-x^2} \operatorname{sur} \mathbb{R}$

On remarque que $h=e^u$ avec u dérivable sur $\mathbb R$ avec avec $u(x)=\dots$ et $u'(x)=\dots$ Donc la fonction h est dérivable sur $\mathbb R$ et $h'(x)=\dots$

• $k(x) = e^{-4x + \frac{2}{x}} \text{ sur }]0; +\infty[$

On remarque que $k=e^u$ avec u dérivable sur $\mathbb R$ avec $u(x)=\dots$ et $u'(x)=\dots$ Donc la fonction k est dérivable sur $\mathbb R$ et $k'(x)=\dots$