

Auto-évaluation

Exercice 1.

On a représenté ci-dessous, la courbe \mathscr{C}_f représentative d'une fonction f définie et dérivable sur $\mathbb R$ et vérifie les propriétés suivantes :

- la tangente à la courbe \mathscr{C}_f au point A de coordonnées (-3,-1) passe par le point de coordonnées (-1,-0.5)
- la tangente à la courbe \mathscr{C}_f au point B d'abscisse -1 est parallèle à l'axe des abscisses



- 1. On note f' la fonction dérivée de la fonction f. Déterminer graphiquement f'(1) et f'(-3).
- 2. La proposition $f'(-2) \le f'(3)$ est-elle vraie?

Correction

1. On sait que la tangente à la courbe \mathscr{C}_f au point B d'abscisse -1 est parallèle à l'axe des abscisses donc f'(1) = 0

Le nombre dérivé f'3) est égal au coefficient directeur de la tangente à la courbe au point A de coordonnées (-3;-1)

or cette tangente passe également par le point de coordonnées (-1,-0.5)

d'où
$$f'(3) = \frac{-1 - (-0,5)}{-3 - (-1)} = \frac{-0.5}{-2} = \frac{1}{2}$$

Donc
$$f'(-3) = \frac{1}{4}$$

2. Sur l'intervalle] $-\infty$;1], la fonction f est croissante donc $f'(-2) \ge 0$

Sur l'intervalle [1;+ ∞ [, la fonction f est décroissante donc $f'(3) \leq 0$

Donc $f'(2) \ge f'(3)$

D'où la proposition est fausse

Exercice 2.

Simplifier les expressions suivantes :

$$A = \frac{(e^{-1})^4}{e}$$

$$B = \frac{e^2 \times e^3}{e^{-3}}$$

Correction

$$A = \frac{(e^{-1})^4}{e} = e^{-1 \times 4} \times e^{-1} = e^{-4 - 1} = e^{-5}$$

$$B = \frac{e^2 \times e^3}{e^{-3}} = e^{2+3} \times e^{-(-3)} = e^5 \times e^3 = e^{5+3} = e^8$$

$$B = \frac{e^2 \times e^3}{e^{-3}} = e^{2+3} \times e^{-(-3)} = e^5 \times e^3 = e^{5+3} = e^8$$

Exercice 3.

Pour tout x de \mathbb{R} , simplifier les expressions suivantes :

$$C = e^{3x+1} \times e^{-x+2}$$

•
$$C = e^{3x+1} \times e^{-x+2}$$
 • $D = e^x(e^{-x} + 2e^x)$

$$\blacksquare \quad \mathbf{E} = \frac{e^{3x-5}}{e^{1-x}}$$

$$F = (e^x \times e^{-x})^2$$

Correction

$$C = e^{3x+1} \times e^{-x+2} = e^{(3x+1)+(-x+2)} = e^{3x+1-x+2} = e^{2x+3}$$

$$C = e^{3x+1} \times e^{-x+2} = e^{(3x+1)+(-x+2)} = e^{3x+1-x+2} = e^{2x+3}$$

$$D = e^x(e^{-x} + 2e^x) = e^x \times e^{-x} + e^x \times 2e^x = e^{x-x} + 2e^{x+x} = e^0 + 2e^{2x} = e^0 + 2e^{2x} = 1 + 2e^{2x}$$

$$E = \frac{e^{3x-5}}{e^{1-x}} = e^{(3x-5)-(1-x)} = e^{3x-5-1+x} = e^{4x-6}$$

$$F = (e^x \times e^{-x})^2 = (e^{x-x})^{-2} = (e^0)^{-2} = 1^{-2} = 1$$

$$E = \frac{e^{3x-5}}{e^{1-x}} = e^{(3x-5)-(1-x)} = e^{3x-5-1+x} = e^{4x-6}$$

•
$$F = (e^x \times e^{-x})^2 = (e^{x-x})^{-2} = (e^0)^{-2} = 1^{-2} = 1$$

Exercice 4.

Etudier le signe des expressions suivantes :

$$e^x + 3$$

$$= 2e^x - 2$$

•
$$(3x-1)e^x$$

Correction

• Signe de $e^x + 3$

Pour tout x, on a $e^x > 0$ alors $e^x + 3 > 3$ donc $e^x + 3 > 0$

alors
$$e^x + 3 > 3$$

• Signe de $2e^x - 2$

On a $2e^x - 2 = 2(e^x - 1)$

Comme 2 > 0 alors $2e^x - 2$ est du signe de $e^x - 1$

x	$-\infty$		0		+∞
e^x-1		_	0	+	
$2e^x-2$		_	0	+	

• Signe de $(3x-1)e^x$

Pour tout x, on a $e^x > 0$ alors $(3x-1)e^x$ est du signe de 3x-1

x	$-\infty$		$\frac{1}{3}$		+∞
3x-1		_	0	+	
$(3x-1)e^x$		_	0	+	

Exercice 5.

Montrer que pour tout réel x , $2e^{2x}-3e^x+1=(e^x-1)(2e^x-1)$

Correction

$$(e^{x}-1)(2e^{x}-1) = 2 \times e^{x} \times e^{x} - e^{x} - 2e^{x} + 1$$

= $2e^{2x} - 3e^{x} + 1$

On obtient ce qu'il fallait démontrer!

Exercice 6.

Calculer la dérivée de chacune des fonctions ci-dessous, définies et dérivables sur \mathbb{R} ou \mathbb{R}^* .

•
$$g(x) = (e^x + 1)(e^x - 5)$$

$$h(x) = \frac{e^x + 5}{x}$$

Correction

• On a
$$g(x) = (e^x + 1)(e^x - 5)$$

On a
$$g(x) = (e^x + 1)(e^x - 5)$$

Alors g est dérivable sur $\mathbb R$ comme produit de fonctions dérivables sur $\mathbb R$

On a
$$g = u \times v$$
 avec $u(x) = e^x + 1$ et $u'(x) = e^x$

$$v(x) = e^x - 5$$
 et $v'(x) = e^x$

Alors
$$g' = u'v + v'u$$

D'où
$$g'(x) = e^x \times (e^x - 5) + (e^x + 1) \times e^x$$

$$g'(x) = e^x \times (e^x - 5 + e^x + 1)$$

Donc
$$g'(x) = e^x(2e^x - 4)$$

• On a
$$h(x) = \frac{e^x + 5}{x}$$

On a $h(x) = \frac{e^x + 5}{x}$

On a
$$h(x) = \frac{e^x + 5}{x}$$

Alors h est dérivable sur \mathbb{R}^* comme quotient de fonctions dérivables sur \mathbb{R}^*

On a
$$h = \frac{u}{v}$$
 avec $u(x) = e^x + 5$ et $u'(x) = e^x$

$$v(x) = x$$
 et $v'(x) = 1$

Alors
$$h' = \frac{u'v - v'u}{v^2}$$

D'où
$$h'(x) = \frac{e^x \times x - 1 \times (e^x + 5)}{x^2}$$

Donc $h'(x) = \frac{xe^x - e^x - 5}{x^2}$

Donc
$$h'(x) = \frac{xe^x - e^x - 5}{x^2}$$

Problèmes

Exercice 7.

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 7x^2 + 11x - 19$. On note \mathscr{C} sa courbe représentative dans un repère $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$ du plan.

- 1. On note f' la fonction dérivée de la fonction f sur $\mathbb R$. Déterminer l'expression de f'(x).
- 2. Résoudre dans \mathbb{R} l'inéquation $3x^2 + 14x + 11 > 0$. En déduire le tableau de variations de la fonction f.
- 3. Déterminer l'équation réduite de la tangente à la courbe $\mathscr C$ au point d'abscisse 0.
- 4. Justifier que 1 est solution de $x^3 + 7x^2 + 11x 19 = 0$. Vérifier que pour tout réel $x: f(x) = (x-1)(x^2 + 8x + 19)$.
- 5. Étudier le signe de la fonction f et en dresser le tableau de signes sur \mathbb{R} .

Correction

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 7x^2 + 11x - 19$. On note \mathscr{C} sa courbe représentative dans un repère $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$ du plan.

- 1. On note f' la fonction dérivée de la fonction f sur \mathbb{R} . $f'(x) = 3x^2 + 7 \times 2x + 11 \times 1 = 3x^2 + 14x + 11.$
- 2. On résout dans \mathbb{R} l'inéquation $3x^2 + 14x + 11 > 0$.

On cherche d'abord si le polynôme admet des racines dans \mathbb{R} .

$$\Delta = b^2 - 4ac = 14^2 - 4 \times 3 \times 11 = 196 - 132 = 64 = 8^2$$

Le discriminant est positif donc le polynôme admet deux racines réelles :

$$x' = \frac{-b - \sqrt{\delta}}{2a} = \frac{-14 - 8}{6} = \frac{-22}{6} = \frac{-11}{3}$$
 et $x'' = \frac{-b + \sqrt{\delta}}{2a} = \frac{-14 + 8}{6} = \frac{-6}{6} = -1$.

On en déduit le signe du polynôme $3x^2+14x+11$ qui est du signe de a=3 donc positif, à l'extérieur des racines :

x	$-\infty$		$-\frac{11}{3}$		-1		+∞
$3x^2 + 14x + 11$		+	0	_	0	+	

L'ensemble solution de l'inéquation $3x^2 + 14x + 11 > 0$ est donc $S = \left] -\infty \; ; \; -\frac{11}{3} \left[\; \cup \; \right] -1 \; ; \; +\infty \right[.$

On cherche les extrémums : $f\left(-\frac{11}{3}\right) = -\frac{392}{27} \approx -14,52$ et f(-1) = -24.

On établit le tableau de variations de la fonction f.

x	$-\infty$		$-\frac{11}{3}$		-1		+∞
f'(x)		+	0	_	0	+	
Variation de f			≈ −14.52 *	2	-24		<i></i>

- 3. La tangente à la courbe $\mathscr C$ au point d'abscisse 0 a pour équation y = f(0) + f'(0)(x-0). $f(x) = x^3 + 7x^2 + 11x 19 \text{ donc } f(0) = -19 \; ; \; f'(x) = 3x^2 + 14x + 11 \text{ donc } f'(0) = 11.$ La tangente a pour équation : y = -19 + 11(x-0) c'est-à-dire y = 11x 19.
- 4. Soit l'équation $x^3 + 7x^2 + 11x 19 = 0$. $1^3 + 7 \times 1^2 + 11 \times 1 19 = 19 19 = 0 \text{ donc } 1 \text{ est solution de l'équation } x^3 + 7x^2 + 11x 19 = 0.$ Pour tout $x \in \mathbb{R}$, $(x-1)(x^2 + 8x + 19) = x^3 + 8x^2 + 19x x^2 8x 19 = x^3 + 7x^2 + 11x 19 = f(x)$.
- 5. Étudier le signe de la fonction f revient à étudier le signe de $f(x) = (x-1)(x^2+8x+19)$, donc le signe de chacun des facteurs.
 - $x-1>0 \iff x>1$
 - Pour étudier le signe de $x^2 + 8x + 19$, on cherche si ce polynôme a des racines. $\Delta = 8^2 4 \times 1 \times 19 = -12 < 0 \text{ donc le polynôme n'a pas de racine, il garde donc un signe constant, celui du coefficient de <math>x^2$; il est donc toujours positif.

On établit le tableau de signes de la fonction f:

x	$-\infty$		1		+∞
x - 1		_	0	+	
$x^{2} + 8x + 19$		+		+	
f(x)		_	0	_	

Exercice 8.

Un capteur solaire récupère de la chaleur par le biais d'un fluide. On s'inétéresse à l'évolution de la température du fluide dans un capeteur de 1m de longueur.

Cette température est modélisée par : $T(x) = 170 - 150e^{-0.6x}$, où $x \in [0;1]$ est la distance, en mètres, parcourue par le fluide depuis son entré dans le capteur, et T(x) est la température en řC .

- 1. Déterminer la température à l'entrée du capteur.
- 2. (a) Etudier les variations de la température T sur [0;1].
 - (b) En déduire la température maximale, au degré près, atteinte par le fluide.

Correction

1. on a
$$T(0) = 170 - 150e^{-0.6 \times 0} = 170 - 150 = 20$$

Donc la température à l'entrée du capteur est T(0) soit 20řC

2. (a) Etudions les variations de la température T sur [0;1].

On sait que
$$T(x) = 170 - 150e^{-0.6x}$$

Comme la fonction T est dérivable sur $\mathbb R$

Alors
$$T'(x) = -150 \times (-0,6)e^{-0,6x}$$

Donc
$$T'(x) = 90e^{-0.6x}$$

(b) En déduire la température maximale, au degré près, atteinte par le fluide.

Comme
$$T'(x) = 90e^{-0.6x}$$

Or
$$90 > 0$$
 et pour tout réel $x e^{-0.6x} > 0$

Donc
$$T'(x) > 0$$

Donc la fonction T est strictement croissante sur [0;1]

comme
$$T(1) = 170 - 150e^{-0.6 \times 1} = 170 - 150e^{-0.6} \approx 87,68$$

Donc la température maximale du capteur est d'environ 87,68 °C

Exercice 9.

On considère la fonction f définie et dérivable sur l'ensemble $\mathbb R$ des nombres réels par $f(x) = x + 1 + \frac{x}{e^x}$. On note $\mathscr C$ sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$

- 1. Soit g la fonction définie et dérivable sur l'ensemble \mathbb{R} par $g(x) = 1 x + e^x$.
 - (a) Dresser, en le justifiant, le tableau donnant les variations de la fonction g sur \mathbb{R} (les limites de g aux bornes de son ensemble de définition ne sont pas attendues).
 - (b) En déduire le signe de g(x).
- 2. On appelle f' la dérivée de la fonction f sur \mathbb{R} . Démontrer que, pour tout réel x, $f'(x) = e^{-x}g(x)$.
- 3. En déduire le tableau de variation de la fonction f sur \mathbb{R} .
- 4. (a) Démontrer que la droite T d'équation y = 2x + 1 est tangente à la courbe $\mathscr C$ au point d'abscisse 0.
 - (b) Etudier la position relative de la courbe $\mathscr C$ et de la droite T.

Correction - Sujet : Antilles-Guyane 19 juin 2014

1. On a g la fonction définie sur l'ensemble \mathbb{R} par $g(x) = 1 - x + e^x$. g est dérivable sur \mathbb{R} comme combinaison simple de fonctions qui le sont, et pour tout réel $x: g'(x) = -1 + e^x$.

On a alors $g'(x) \ge 0$ \Leftrightarrow $e^x \ge 1$ $\Leftrightarrow x \ge 0$.

Le tableau de variations de g est donc :

x	$-\infty$	0	+∞
g'(x)	_	0	+
Variation de g		2	

On déduit du tableau précédent que, pour tout réel x, $g(x) \ge 2 > 0$.

2. On a la fonction f définie sur l'ensemble $\mathbb R$ par $f(x) = x + 1 + xe^{-x}$. La fonction f est dérivable sur $\mathbb R$ comme combinaison simple de fonctions qui le sont,

Pour tout réel
$$x$$
, on a $f = u + v \times w$ d'où $f = u' + (v'w + w'v)$

avec
$$u(x) = x + 1$$
 $u'(x) = 1$

$$v(x) = x \qquad v'(x) = 1$$

$$w(x) = e^{-x}$$
 $w'(x) = -e^{-x}$

D'où
$$f'(x) = 1 + (1 \times e^{-x} + (-e^{-x}) \times x)$$

 $= 1 + e^{-x}(1 - x)$
 $= e^{-x}(e^x + (1 - x))$
 $= e^{-x}(1 - x + e^x)$
 $= e^{-x}g(x)$.

Donc pour tout nombre réel $x : f'(x) = e^{-x}g(x)$.

3. On a démontré que pour tout nombre réel $x: f'(x) = e^{-x}g(x)$.

On a vu plus haut que, pour tout réel x, g(x) > 0,

et comme par ailleurs $e^{-x} > 0$

Donc on en déduit que f'(x) > 0.

On obtient alors le tableau de variations suivant :

x	$-\infty$	+∞
f'(x)		+
Variation de f		

4. (a) L'équation de la tangente au point d'abscisse $0: T_0: y = f'(0)(x-0) + f(0)$

Puisque
$$f'(x) = e^{-x}g(x)$$
, on obtient $f'(0) = 2$

Puisque
$$f(x) = x + 1 + \frac{x}{e^x}$$
, on obtient $f(0) = 1$

Alors
$$T_0: y = 2(x-0) + 1$$

Donc
$$T_0: y = 2x + 1$$

(b) On pose pour tout réel x, k(x) = f(x) - (2x + 1),

Alors
$$k(x) = x + 1 + \frac{x}{e^x} - (2x + 1)$$
$$= \frac{x}{e^x} - x$$
$$= \frac{x}{e^x} (1 - e^x)$$

Dressons alors un tableau de signes :

x	$-\infty$		0		+∞
x		_	0	+	
e^x		+		+	
$1-e^x$		+	0	_	
k(x)		_	0	_	

On en déduit que \mathscr{C} est située en dessous de T.