

SUJET BLANC - CORRIGÉ

EXERCICE 1 (5 points)

Partie A

1. Dans la cellule B3 on a saisi la formule : =2*B2-A2+1

2. B9 = 519.

Partie B

1. a. Pour tout entier naturel n, on pose P(n) : « $u_n > n$ »

Initialisation: Pour n = 0 on a $u_0 = 4$. Or 4 > 0. Donc P(0) est vérifiée.

Hérédité: Supposons P(n) vraie pour un entier naturel n fixé quelconque, et sous cette hypothèse, démontrons que P(n+1) est vraie, c'est-à-dire montrons que $u_{n+1}>n+1$.

Si $u_n>n$ alors en multipliant par 2 chaque membre on obtient $2u_n>2n$, puis en soustrayant n à chaque membre, on a $2u_n-n>n$, et finalement en ajoutant 1 à chaque membre :

$$2u_n - n + 1 > n + 1$$
.

Or, par définition de la suite (u_n) , on sait que $u_{n+1} = 2u_n - n + 1$.

Donc, on a bien démontré que, si $u_n > n$ alors $u_{n+1} > n+1$.

Conclusion: P(n) est initialisée à 0 et héréditaire, donc elle est vraie pour tout entier naturel.

Ainsi, pour tout entier naturel n, on a $u_n > n$.

b. On sait que $\lim_{n\to+\infty} n = +\infty$.

D'après la question précédente, pour tout entier naturel n, on a $u_n>n$ donc par comparaison des limites, on en déduit que $\lim_{n\to+\infty}u_n=+\infty$

- 2. a. Ce programme donne le plus petit entier n tel que $u_n > 10^6$.
- b. Oui, en théorie, par définition de la limite « infinie » d'une suite.

Si on a $\lim_{n\to+\infty}u_n=+\infty$ alors, quelle que soit la valeur choisie, il existe un rang à partir duquel tous les termes de la suite seront supérieurs à cette valeur.

Il ne pourrait y avoir qu'un problème de capacité de calcul de la machine qui effectue ce programme.

3. a. Pour tout entier naturel n, on a $v_n = u_n - n$.

Donc
$$v_{n+1} = u_{n+1} - (n+1)$$
.

C'est-à-dire :
$$v_{n+1} = 2u_n - n + 1 - n - 1$$
 (car $u_{n+1} = 2u_n - n + 1$)

Donc
$$v_{n+1} = 2u_n - 2n = 2(u_n - n) = 2v_n$$
.

On vient donc de démontrer que, pour tout entier naturel n, on a $v_{n+1} = 2v_n$.

Cela signifie que la suite (v_n) est une suite géométrique de premier terme $v_0=u_0-0=4$ et de raison 2.

b. Pour tout entier naturel n, on a $v_n = u_n - n \iff u_n = v_n + n$.

Or (v_n) étant une suite géométrique, pour tout entier naturel n, on a $v_n = v_0 q^n = 4 \times 2^n$.

Donc, pour tout entier naturel n, on a $u_n = 4 \times 2^n + n$

c.
$$u_7 = 4 \times 2^7 + 7 = 519$$
.

On retrouve bien le même résultat.

4. a. On obtient l'algorithme complété suivant.

b.
$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$

$$= 4 \times 2^0 + 0 + 4 \times 2^1 + 1 + 4 \times 2^2 + 2 + \dots + 4 \times 2^n + n$$

$$= 4(2^0 + 2^1 + 2^2 + \dots + 2^n) + (0 + 1 + 2 + \dots + n)$$

$$= 4\left(\frac{1 - 2^{n+1}}{1 - 2}\right) + \frac{n(n+1)}{2}$$

$$= -4(1 - 2^{n+1}) + \frac{n(n+1)}{2}$$

$$= 2^{n+3} + \frac{n(n+1)}{2} - 4$$
Donc $S_{20} = 2^{23} + \frac{20 \times 21}{2} - 4 = 8388814$

EXERCICE 2 (5 points)

Partie A

1. a.
$$f(0) = \ln(0+1)(4 - \ln(0+1)) = 0$$
 car $\ln(1) = 0$.

On sait que
$$\lim_{X\to +\infty} x+1=+\infty$$
 et $\lim_{X\to +\infty} \ln(X)=+\infty$.

Donc par composition des limites :
$$\lim_{x \to +\infty} \ln(x+1) = +\infty$$

On en déduit, par produit des limites :
$$\lim_{x \to +\infty} -\ln(x+1) = -\infty$$

Donc, par somme des limites :
$$\lim_{x \to +\infty} 4 - \ln(x+1) = -\infty$$

Et, par produit des limites :
$$\lim_{x \to +\infty} f(x) = -\infty$$

2. Résolvons l'équation
$$f(x) = 0$$
:

$$\ln(x+1)(4 - \ln(x+1)) = 0$$

$$\Leftrightarrow \ln(x+1) = 0 \text{ ou } 4 - \ln(x+1) = 0$$

$$\Leftrightarrow x + 1 = 1$$
 ou $\ln(x + 1) = 4$

$$\Leftrightarrow x = 0 \text{ ou } x + 1 = e^4$$

$$\Leftrightarrow x = 0 \text{ ou } x = e^4 - 1.$$

Donc
$$\alpha = e^4 - 1$$
.

3. f est de la forme d'un produit uv de fonctions dérivables sur $[0; +\infty[$ avec $u(x) = \ln(x+1)$ et $v(x) = 4 - \ln(x+1)$.

On a
$$u'(x) = \frac{1}{x+1}$$
 et $v'(x) = -\frac{1}{x+1}$

Donc
$$f'(x) = \frac{1}{x+1} (4 - \ln(x+1)) - \frac{1}{x+1} \ln(x+1) = \frac{4 - \ln(x+1) - \ln(x+1)}{x+1} = \frac{4 - 2\ln(x+1)}{x+1}$$

4. f'(x) est sous la forme d'un quotient de deux expressions.

Étudions le signe de chaque expression :

- au dénominateur l'expression x+1 est strictement positive pour tout x de l'intervalle $[0;+\infty[$,
- au numérateur, pour trouver le signe de l'expression, résolvons l'inéquation : $4-2\ln(x+1) \ge 0$.

Cela donne :
$$4 \ge 2 \ln(x+1) \Leftrightarrow 2 \ge \ln(x+1)$$

$$\Leftrightarrow \ln(x+1) \leqslant 2 \Leftrightarrow x+1 \leqslant e^2 \Leftrightarrow x \leqslant e^2-1.$$

Donc l'expression au numérateur est positive si et seulement si $x \le e^2 - 1$.

On en déduit le tableau suivant.

x	0	$e^{2}-1$			+∞
Signe de $f'(x)$		+	0	_	
Variations de f	0-		→ 4 ·		>>-∞

Épreuve d'enseignement de spécialité - Mathématiques Tle

5. f ' est de la forme $\frac{u}{v}$ avec $u(x) = 4 - 2\ln(x+1)$ et v(x) = x+1 dérivables sur $[0; +\infty[$.

On a
$$u'(x) = \frac{-2}{x+1}$$
 et $v'(x) = 1$.

Donc
$$f''(x) = \frac{\frac{-2}{x+1}(x+1) - 1 \times (4 - 2\ln(x+1))}{(x+1)^2} = \frac{-2 - 4 + 2\ln(x+1)}{(x+1)^2} = \frac{-6 + 2\ln(x+1)}{(x+1)^2}$$

Étudions le signe de f''(x) sur $[0; +\infty[$:

- au dénominateur, l'expression est strictement positive.
- au numérateur, on a :

$$-6 + 2\ln(x+1) \geqslant 0 \Leftrightarrow 2\ln(x+1) \geqslant 6$$

$$\Leftrightarrow \ln(x+1) \geqslant 3 \Leftrightarrow x+1 \geqslant e^3 \Leftrightarrow x \geqslant e^3-1.$$

On en déduit que f''(x) est positive si et seulement si $x \ge e^3 - 1$.

Donc f est convexe sur l'intervalle $[e^3 - 1; +\infty[$ et concave sur $[0; e^3 - 1]$.

f admet donc un point d'inflexion en $e^3 - 1$: il s'agit bien du point I.

6. La tangente à C_f au point I a pour équation :

$$y = f'(e^3 - 1)(x - (e^3 - 1)) + f(e^3 - 1).$$

Or
$$f'(e^3 - 1) = \frac{4 - 2\ln(e^3 - 1 + 1)}{e^3 - 1 + 1} = \frac{4 - 2\ln(e^3)}{e^3} = \frac{4 - 2 \times 3}{e^3} = \frac{-2}{e^3}$$
 et $f(e^3 - 1) = \ln(e^3)(4 - \ln(e^3)) = 3$.

L'équation est donc :
$$y = \frac{-2}{e^3}(x - e^3 + 1) + 3 \Leftrightarrow y = \frac{-2}{e^3}x + 2 - \frac{2}{e^3} + 3 \Leftrightarrow y = \frac{-2}{e^3}x - \frac{2}{e^3} + 5$$
.

Partie B

- 1. D'après la question 5. de la partie A, on sait que l'altitude maximale atteinte par le parapente est 4 dizaines de mètres, c'est à dire 40 m.
- **2.** D'après la question **3.** de la partie A le parapente retourne au sol au bout de $\alpha = (e^4 1)$ minutes, c'est-à-dire 53,6 minutes environ, ce qui fait 53 minutes et 36 secondes.
- **3.** Le taux de chute en phase de descente est égal à -f'(t).

Donc il est maximal lorsque f'(t) est minimal.

D'après la partie A, sur l'intervalle $[e^2 - 1; +\infty[$ qui correspond à la phase de descente, le minimum de f' est obtenu au point d'inflexion I, car f est concave pour $x < e^3 - 1$ et f convexe

pour $x > e^3 - 1$, ce qui signifie que f' est décroissante sur l'intervalle $[e^2 - 1; e^3 - 1]$ et f' est croissante sur $[e^3 - 1; +\infty[$.

Le minimum de f' est donc obtenu pour $x={\rm e}^3-1$; ce qui correspond au maximum de la fonction « opposée » – f'.

Le taux de chute (en phase de descente) est maximal au bout d'environ 19 minutes.

EXERCICE 3 (5 points)

Partie A. Rangement du chantier

1.
$$p(M) = 0.75 = \frac{3}{4}$$
, $p(E) = 0.6 = \frac{3}{5}$, $p_E(M) = 1$

2.
$$p(E \cap M) = p(E) \times p_E(M) = \frac{3}{5} \times 1 = \frac{3}{5}$$

$$p(E \cap \overline{M}) = p(E) \times p_E(\overline{M}) = \frac{3}{5} \times 0 = 0$$

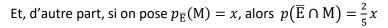
3. On obtient l'arbre complété ci-contre.

4. On cherche $p_{\overline{E}}(M)$.

D'après la formule des probabilités totales :

$$p(M) = p(E \cap M) + p(\overline{E} \cap M).$$

Or
$$p(M) = \frac{3}{4}$$
 et $p(E \cap M) = \frac{3}{5}$.



Donc
$$\frac{3}{5} + \frac{2}{5}x = \frac{3}{4} \iff \frac{2}{5}x = \frac{3}{4} - \frac{3}{5} \iff \frac{2}{5}x = \frac{3}{20} \iff x = \frac{3}{20} \times \frac{5}{2} \iff x = \frac{3}{8}$$

5.
$$p_{\rm M}(E) = \frac{p({\rm E} \cap {\rm M})}{p({\rm M})} = \frac{0.6}{0.75} = 0.8 = \frac{4}{5}$$

Partie B. Trajet de retour

- **1.** L'artisan rentre sans encombre chez lui s'il range en moins d'une heure. On sait que sur ce chantier il doit utiliser de la peinture à l'huile. La probabilité cherchée est donc $p_{\overline{E}}(M)$, c'est-à-dire $\frac{3}{9}$.
- **2. a.** Chaque jour, le trajet de retour peut être considéré comme une épreuve de Bernoulli de succès : « L'artisan emprunte l'autoroute à péage » dont la probabilité est :

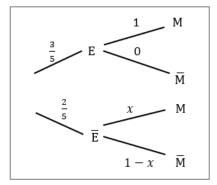
$$p_{\bar{E}}(\bar{M}) = 1 - p_{\bar{E}}(M) = 1 - \frac{3}{8} = \frac{5}{8}.$$

Il y a cinq trajets, indépendants les uns des autres. Donc la variable aléatoire N qui donne le nombre de jours où l'artisan emprunte l'autoroute à péage (c'est-à-dire le nombre de succès) parmi les cinq suit la loi binomiale de paramètres n=5 et $p=\frac{5}{8}$.

b.
$$p(N = 3) = {5 \choose 3} \times {5 \choose 8}^3 \times {3 \choose 8}^2 \approx 0.3433$$

- **c.** $E(N) = n \times p = 5 \times \frac{5}{8} \approx 3$. Donc, en moyenne, sur ce type de chantier de cinq jours, l'artisan devra emprunter 3 fois l'autoroute.
- **d.** L'artisan rentre au moins une fois sans encombre chez lui signifie qu'il emprunte l'autoroute au plus quatre fois sur les cinq.

On calcule donc :
$$p(N \le 4) = 1 - p(N = 5) = 1 - {5 \choose 5} \times {5 \choose 8}^5 \times {3 \choose 8}^0 = 1 - {5 \choose 8}^5 \approx 0,904 \text{ 6.}$$



Épreuve d'enseignement de spécialité - Mathématiques Tle

e. Si le chantier dure plus longtemps que 5 jours alors la variable aléatoire N suit la loi binomiale de paramètres $n \ge 5$ et $p = \frac{5}{8}$. On cherche donc le plus petit entier n tel que $p(N \le n-1) > 0.99$.

Or
$$p(N \le n-1) = 1 - p(N=n) = 1 - {n \choose n} \times \left(\frac{5}{8}\right)^n \times \left(\frac{3}{8}\right)^0 = 1 - \left(\frac{5}{8}\right)^n$$
.

Donc il faut résoudre l'inéquation :

$$1 - \left(\frac{5}{8}\right)^n > 0.99 \Leftrightarrow 1 - 0.99 > \left(\frac{5}{8}\right)^n$$

$$\Leftrightarrow$$
 $\left(\frac{5}{8}\right)^n < 0.01 \Leftrightarrow \ln\left(\left(\frac{5}{8}\right)^n\right) < \ln(0.01)$

$$\iff n \times \ln\left(\frac{5}{8}\right) < \ln(0.01) \iff n > \frac{\ln(0.01)}{\ln\left(\frac{5}{9}\right)}.$$

Or $\frac{\ln(0.01)}{\ln(\frac{5}{8})} \approx 9.8$ donc le plus petit entier n possible est 10.

Il faut donc au minimum 10 jours de chantier pour que la probabilité pour l'artisan de rentrer au moins une fois sans encombre chez lui soit supérieure à 99%.

EXERCICE 4 (5 points)

Affirmation 1: FAUSSE

$$OB = \sqrt{0^2 + 5^2 + 0^2} = 5.$$

$$OC = \sqrt{4^2 + 3^2 + 0^2} = \sqrt{25} = 5.$$

BC =
$$\sqrt{(4-0)^2 + (3-5)^2 + (0-0)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20} = 2\sqrt{5}$$
.

Affirmation 2: VRAIE

Soit $\mathcal V$ le volume du tétraèdre : $\mathcal V = \frac{\mathrm{Aire}(\mathrm{OBC}) \times \mathrm{DI}}{3}$

Or, OBC est un triangle isocèle en O d'après la question précédente.

Donc la hauteur issue de O est confondue avec la médiane issue de O, c'est-à-dire [OI].

Le point I, milieu de [BC] a pour coordonnées $\left(\frac{0+4}{2}; \frac{5+3}{2}; \frac{0+0}{2}\right)$.

C'est-à-dire I(2 ; 4 ; 0). On en déduit : OI $= \sqrt{2^2 + 4^2 + 0^2} = \sqrt{20} = 2\sqrt{5}$

Donc : Aire(OBC) = $\frac{OB \times OI}{2} = \frac{\sqrt{20} \times \sqrt{20}}{2} = 10$.

D'autre part, la hauteur du tétraèdre est : DI = $\sqrt{(2-2)^2 + (4-4)^2 + (0-4)^2} = \sqrt{(-4)^2} = 4$.

Donc
$$\mathcal{V} = \frac{10 \times 4}{3} = \frac{40}{3}$$
.

Épreuve d'enseignement de spécialité - Mathématiques Tle

Affirmation 3: FAUSSE

$$\overrightarrow{OC} \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} \text{ et } \overrightarrow{BD} \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \text{. Donc } \overrightarrow{OC} \cdot \overrightarrow{BD} = 4 \times 2 + 3 \times (-1) + 0 \times 4 = 5 \neq 0.$$

Affirmation 4: VRAIE

(DI) est la hauteur du tétraèdre relative à la base (OBC), donc (DI) est orthogonale à toute droite du plan (OBC), en particulier à (BC). Donc : (BC) \perp (DI).

Dans le triangle OBC, (OI) est la hauteur relative au côté [BC]. Donc : (BC)⊥(OI).

De plus (DI) et (OI) sont deux droites sécantes incluses dans le plan (ODI). Donc (BC)⊥(ODI).

Le vecteur \overrightarrow{BC} est donc un vecteur normal au plan (ODI). Or, on a $\overrightarrow{BC}\begin{pmatrix} 4\\-2\\0\end{pmatrix}$.

Tout vecteur colinéaire à \overrightarrow{BC} est donc aussi un vecteur normal au plan (ODI).

Donc le vecteur $\vec{n} = \frac{1}{2} \overrightarrow{BC}$ est normal au plan (ODI). Ses coordonnées sont : $\vec{n} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$.

Ainsi une équation cartésienne du plan (ODI) est de la forme : 2x - y + d = 0, où d est un réel.

L'origine O du repère appartient au plan (ODI), donc d=0.

Ainsi, l'équation 2x - y = 0 est bien une équation du plan (ODI).

Affirmation 5: FAUSSE

La droite (Δ) parallèle à (BC) passant par A(0 ; 3 ; 3) a pour vecteur directeur $\overrightarrow{BC}\begin{pmatrix} 4\\-2\\0\end{pmatrix}$.

Donc une représentation paramétrique $de(\Delta)$ est : $\begin{cases} x = 4t \\ y = -2t + 3 \end{cases} \quad (t \in \mathbb{R}).$

On sait que (Δ) est orthogonale au plan (ODI) d'après la question précédente.

Donc il existe bien un point d'intersection entre la droite (Δ) et le plan (ODI).

Les coordonnées de ce point d'intersection E sont le triplet (x; y; z) solution du système :

$$\begin{cases} x = 4t \\ y = -2t + 3 \quad (t \in \mathbb{R}) \\ z = 3 \\ 2x - v = 0 \end{cases}$$

On obtient $2(4t) - (-2t + 3) = 0 \Leftrightarrow 8t + 2t - 3 = 0 \Leftrightarrow 10t = 3 \Leftrightarrow t = 0,3$.

Donc
$$\begin{cases} x = 4 \times 0.3 = 1.2 \\ y = -2 \times 0.3 + 3 = 2.4 \\ z = 3 \end{cases}$$
 Ce qui donne E (1,2; 2,4; 3).