

DS 2 - jeudi 15 décembre 2022 - sujet C

Durée: 1h50				Calculatrice est autorisée	
Nom :	Prénom :				
TOTAL sur 20	Exercice 1	Exercice 2	Exercice 3	Exercice 4	
	/ 8	/4	/6,5	/ 1,5	

Exercice 1. 8 points

On considère les fonctions h et f définie sur $[0; +\infty[$ par : $h(x) = x - \frac{1}{6}x^2$ et $f(x) = \ln(2x+1)$. On note P la courbe représentative de h et \mathscr{C}_f la courbe représentative de f dans un repère.

- 1. Étudier les variations de la fonction h sur $[0; +\infty[$.
- 2. (a) Étudier les variations de la fonction f sur $[0; +\infty[$.
 - (b) Déterminer une équation de la tangente \mathscr{T}_0 à \mathscr{C}_f au point d'abscisse 0.
- 3. On se propose d'étudier la position de \mathscr{C}_f par rapport à P. Pour cela on considère la fonction ψ , définie sur $[0; +\infty[$ par $\psi(x) = f(x) h(x)$.
 - (a) Calculer la dérivée ψ' de ψ . En déduire le sens des variation de ψ .
 - (b) Calculer $\psi(0)$. Déterminer enfin le signe de ψ et interpréter graphiquement le résultat obtenu.

On pourrait également démontrer que la courbe \mathscr{C}_f est en dessous de sa tangente \mathscr{T}_0 .

- 4. (a) Déterminer une primitive H de la fonction h sur $[0; +\infty[$.
 - (b) Montrer que la fonction F définie sur $[0; +\infty[$ par $F(x) = \left(x + \frac{1}{2}\right) \ln(2x + 1) \left(x + \frac{1}{2}\right)$ est une primitive de la fonction f.
 - (c) La suite du problème se fera au moins de mars, il vous faudra encore un peu de patience!

Exercice 2. 4 points

Soit la suite (u_n) définie sur \mathbb{N}^* par : $\begin{cases} u_1=0,5\\ \forall\,n\in\mathbb{N}^*,u_{n+1}=0,6\,\,u_n+0,24 \end{cases}$

- 1. Montrer par récurrence que : $\forall n \in \mathbb{N}^*$, $u_n = 0, 6 0, 1 \times 0, 6^{n-1}$
- 2. Que peut-on dire sur la convergence de la suite (u_n) . Justifier.

Exercice 3. 6,5 points

Une entreprise fabrique des balles de tennis et dispose de trois chaines de fabrication appelées A, B, C.

- La chaine A fabrique 30 % de la production totale de l'entreprise.
- La chaine B en fabrique 10 %.
- La chaine C fabrique le reste de la production.

En sortie de chaines, certaines balles peuvent présenter un défaut : 5 % des balles issues de la chaine A ; 5 % des balles issues de la chaine B et 4 % des balles issues de la chaine C présentent un défaut.

On choisit au hasard une balle dans la production de l'entreprise et on note les évènements :

- A : « la balle provient de la chaine A » ; B : « la balle provient de la chaine B » ;
- C : « la balle provient de la chaine C » ; D : « la balle présente un défaut ».
- 1. Construire un arbre pondéré traduisant cette situation.
- 2. Comment se note la probabilité de l'évènement « la balle présente un défaut et provient de la chaine B » ?
- 3. Montrer que P(D), la probabilité de l'évènement D, vaut 0,044.
- 4. Calculer $P_D(A)$, la probabilité de A sachant D, et donner un résultat arrondi à 0,001. Interpréter le resultat obtenu.
- 5. On choisit 20 balles au hasard dans la production totale qui est suffisamment importante pour que ce choix puisse être assimilé à vingt tirages indépendants avec remise.
 - (a) Soit X la variable aléatoire correspondant au nombre de balles possédant un défaut. Déterminer la loi de probablité de X dans cette situation.
 - (b) Quelle est la probabilité pour que 3 balles possèdent un défaut? Arrondir le résultat à 0,0001 et justifier la réponse.
 - (c) Quelle est la probabilité pour qu'au moins 5 balles possèdent un défaut? Arrondir le résultat à 0,0001 et justifier la réponse.
 - (d) Quelle est la moyenne de balles ayant un défaut dans cette situation?
 - (e) Déterminer le plus petit nombre k de balles pour que $P(X \le k) \ge 0.99$?

Exercice 4. 1,5 points

On considère le parallélépipède ABCDEFGH

• Compléter par la lettre voulue

$$\overrightarrow{DB} = \overrightarrow{...G} + \overrightarrow{DA}$$

H G F F C

• Déterminer le vecteur suivant, c'est-à-dire simplifiez l'expression afin d'obtenir un seul vecteur.

 $\overrightarrow{CD} + \overrightarrow{HF} + \overrightarrow{BF} = \dots$