

DS 2 - mardi 30 novembre 2021 - sujet B

Durée: 2 heures

TOTAL sur 20

Exercice 1

Exercice 2

Exercice 3

Exercice 4

/ 4

/5

/ 5

/ 6

Exercice 1. 4 points

La suite (u_n) est définit par $u_0 = 13$ et pour tout entier naturel n, on a : $u_{n+1} = \frac{1}{5}u_n + \frac{4}{5}$.

- 1. Montrer par récurrence que, pour tout entier naturel $n: u_n = 1 + \frac{12}{5^n}$.
- 2. En déduire la limite de la suite (u_n) .

Correction -

1. Considérons la propriété P_n définie par : P_n : $u_n=1+\frac{12}{5^n}$ pour tout entier naturel n Initialisation : On a les deux valeurs suivantes : $u_0=13$ et $1+\frac{12}{5^0}=1+\frac{12}{1}=13$ On vient de montrer que la propriété P_0 est vraie.

<u>Hérédité</u>: Supposons la propriété P_n réalisée pour un entier naturel n quelconque, c'est à dire que $u_n=1+\frac{12}{5^n}$ et montrons que P_{n+1} est vraie.

On a
$$u_{n+1} = \frac{1}{5} u_n + \frac{4}{5} = \frac{1}{5} \left(1 + \frac{12}{5^n} \right) + \frac{4}{5} = \frac{1}{5} + \frac{12}{5 \times 5^n} + \frac{4}{5} = \frac{5}{5} + \frac{12}{5^{n+1}} = 1 + \frac{12}{$$

D'où la propriété P_{n+1} est vraie.

Conclusion : On vient d'établir que la propriété P_n est initialisée au rang 0 et qu'elle vérifie la propriété d'hérédité. A l'aide d'un raisonnement par récurrence, on vient d'établir que la propriété P_n est vraie pour tout entier naturel n alors pour tout entier naturel n, $u_n = 1 + \frac{12}{5^n}$

2. On sait que $u_n = 1 + \frac{12}{5^n} = 1 + 12 \times \frac{1}{5^n} = = 1 + 12 \times \left(\frac{1}{5}\right)^n$ $\text{Comme } < \frac{1}{5} < 1 \text{ alors } \lim_{n \to \infty} \left(\frac{1}{5}\right)^n = 0$

$$\mathsf{D'où} \ \lim_{n \to \infty} 1 + 12 \times \left(\frac{1}{5}\right)^n \ = 1$$

Donc $\lim_{n\to\infty} u_n = 1$

Exercice 2. 5 points

- 1. Déterminer une primitive de chacune des fonctions suivantes sur son ensemble de définition (sans justifier) :
 - (a) sur \mathbb{R} , $m(x) = 7x^2 + 2x 5$
 - (b) sur \mathbb{R} , $n(x) = (x+1)e^{x^2+2x}$
- 2. Soient deux fonctions définies sur]0; $+\infty$ [par $f(x) = \frac{\ln(x)}{x^2}$ et $g(x) = \frac{-1 \ln(x)}{x}$.
 - (a) Montrer que g est une primitive de f.
 - (b) En déduire la primitive F de f sur $]0; +\infty[$ telque $F(e) = \frac{1}{2}$.
- 3. Déterminer l'ensemble des fonctions vérifiant l'équation différentielle : v' + 2v = 4.

Correction

1. Déterminer une primitive de chacune des fonctions suivantes sur son ensemble de définition (sans justifier):

(a) sur
$$\mathbb{R}$$
, $m(x) = 7x^2 + 3x + 5$ alors $M(x) = 7 \times \frac{1}{3}x^3 + 2 \times \frac{1}{2}x^2 + 5 \times x = \frac{7}{3}x^3 + x^2 - 5x$

(b) sur
$$\mathbb{R}$$
, $n(x) = (x+1)e^{x^2+2x}$ alors $N(x) = \frac{1}{2}e^{x^2+2x}$

2. Sur]0; +
$$\infty$$
[, on a $f(x) = \frac{\ln(x)}{x^2}$ et $g(x) = \frac{-1 - \ln(x)}{x}$

(a) On a
$$g(x) = \frac{-1 - \ln(x)}{x}$$

Donc la fonction g est dérivable sur $]0;+\infty[$ comme quotient de fonctions dérivables sur $]0;+\infty[.$

Alors
$$g = \frac{u}{v}$$
 et $g' = \frac{u'v - v'u}{v^2}$ avec $u(x) = -1 - \ln(x)$ $u'(x) = -\frac{1}{x}$ et $v(x) = x$ $v'(x) = 1$

D'où
$$g'(x) = \frac{-\frac{1}{x} \times x - 1 \times (-1 - \ln(x))}{x^2} = \frac{-1 + 1 + \ln(x)}{x^2} = \frac{\ln(x)}{x^2} = f(x)$$

Donc la fonction g est bien une primitive de f

(b) On sait que g est une primitive de f

Comme F est également une primitive de f alors $F(x) = g(x) + k = \frac{-1 - \ln(x)}{x} + k$

De plus
$$F(e) = \frac{1}{e} \iff \frac{-1 - \ln(e)}{e} + k = \frac{1}{e} \iff \frac{-2}{e} + k = \frac{1}{e} \iff k = \frac{3}{e}$$

Donc
$$F(x) = \frac{-1 - \ln(x)}{x} + \frac{3}{e}$$

- 3. Déterimer l'ensemble des fonctions vérifiant l'équation différentielle : y' + 2y = 4.
 - On veut résoudre sur \mathbb{R} l'équation différentielle y' + 2y = 0 ou y' = -2yD'après le cours, on sait que de la solution générale est de la forme $x \longmapsto \mathrm{K} e^{-2x}$ avec $\mathrm{K} \in \mathbb{R}$

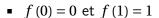
■ Une fonction constante doit vérifier l'équation soit $0+2C=4 \iff C=\frac{4}{2}=2$ Donc les solutions de l'équation différentielle y'+2y=4 sont les fonctions définies sur $\mathbb R$ par $x \longmapsto K \mathrm{e}^{-2x} + 2$ avec $K \in \mathbb R$

Donc les solutions de l'équation différentielle y'+2y=4 sont les fonctions définies $\overline{\sup \mathbb{R} \operatorname{par} x \longmapsto \operatorname{Ke}^{-2x} + 2 \operatorname{avec} \operatorname{K} \in \mathbb{R} }.$

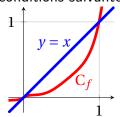
Exercice 3. 5 points

On s'intéresse à des courbes permettant d'analyser la répartition de la masse salariale d'une entreprise.

Les fonctions f associées sont définies sur [0;1] et doivent vérifier les conditions suivantes :



- f est croissante sur [0;1]
- Pour tout x de l'intervalle [0;1] , $f(x) \le x$



Justifiez que la fonction g définie sur \mathbb{R} par $g(x) = x e^{x-1}$ vérifie les trois conditions.

Correction

On a $g(x) = x e^{x-1}$, la fonction g est bien définie sur [0;1]

•
$$g(0) = 0 \times e^{0-1} = 0$$
 et $g(1) = 1 \times e^{1-1} = 1$ $g(0) = 0$ et $g(1) = 1$

• Étude des variations de la fonction g

On a
$$g(x) = x e^{x-1}$$

Alors la fonction g est dérivable sur $[0\ ;1]$ comme produit de fonctions dérivables sur $[0\ ;1]$

D'où
$$g = u \times v$$
 et $g' = u'v + v'u$ avec $u(x) = x$ et $u'(x) = 1$ et $v(x) = e^{x-1}$ et $v'(x) = 1 \times e^{x-1} = e^{x-1}$

Donc
$$g'(x) = 1 \times e^{x-1} + x \times e^{x-1} = (1+x) e^{x-1}$$

Comme sur
$$[0;1]$$
 , $e^{x-1} > 0$ et $x+1 > 0$ donc $g'(x) > 0$

Donc la fonction
$$g$$
 est bien croissante sur $[0;1]$

• Etude du signe de g(x) - x

On a
$$g(x) - x = x e^{x-1} - x = x (e^{x-1} - 1)$$

Sur [0;1] alors
$$x > 0$$

Et
$$0 \le x \le 1$$
 \iff $-1 \le x - 1 \le 1 - 1$ \iff $e^{-1} \le e^{x - 1} \le e^{0}$ \iff $e^{-1} - 1 \le e^{x - 1} - 1 \le 1 - 1$ \iff $e^{x - 1} - 1 \le 0$

Alors sur
$$[0;1]$$
, on a $x(e^{x-1}-1) \le 0 \iff g(x)-x \le 0 \iff g(x) \le x$

Donc sur
$$[0;1]$$
, on a $g(x) \le x$

Les trois conditions sont bien vérifiées.

Exercice 4. 6 points

Un opérateur de téléphonie mobile organise une campagne de démarchage par téléphone pour proposer la souscription d'un nouveau forfait à sa clientèle, composée à 65 % d'hommes.

Des études préalables ont montré que 30 % des hommes contactés écoutent les explications, les autres raccrochant aussitôt (ou se déclarant immédiatement non intéressés). Parmi les femmes, 60 % écoutent les explications. On admet que ces proportions restent stables.

Partie A

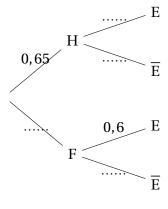
On choisit au hasard une personne dans le fichier clients. Chaque personne a la même probabilité d'être choisie. On note H l'évènement « la personne choisie est un homme »,

F l'évènement « la personne choisie est une femme »,

E l'évènement « la personne choisie écoute les explications du démarcheur » et

E l'évènement contraire de E.

- 1. Compléter l'arbre de probabilité proposé ci-contre :
- 2. (a) Calculer $p(E \cap F)$ et interpréter le résultat.
 - (b) Montrer que la probabilité que la personne choisie écoute les explications du démarcheur est égale à 0,405.
 - (c) Le démarcheur s'adresse à une personne qui l'écoute. Quelle est la probabilité que ce soit un homme? *On donnera le résultat arrondi au centième.*



Partie B

Les relevés réalisés au cours de ces premières journées permettent également de constater que 12 % des personnes interrogées souscrivent à ce nouveau forfait.

Chaque employé de l'opérateur effectue 60 appels par jour.

On suppose le fichier suffisamment important pour que les choix soient considérés réalisés de façon indépendante et dans des conditions identiques.

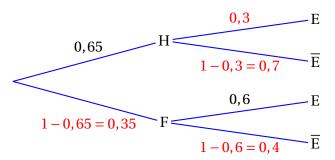
On note X la variable aléatoire qui comptabilise le nombre de souscriptions réalisées par un employé donné un jour donné.

- 1. Justifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres.
- 2. Déterminer la probabilité que l'employé obtienne 5 souscriptions un jour donné. (*On arrondira le résultat au centième*).
- 3. Déterminer la probabilité que l'employé obtienne au moins une souscription un jour donné. *On donnera une valeur arrondie au dix millième*.

Correction - Baccalauréat ES/L Métropole - La Réunion - 13 septembre 2013

Partie A

1. L'arbre de probabilité correspondant aux données du problème est :



 (a) L'événement E∩F est « la personne choisie écoute les explications du démarcheur et est une femme. ».

D'après les propriétés de l'arbre pondéré :

$$P(E \cap F) = P(F \cap E) = P(F) \times P_F(E) = 0,35 \times 0,6 = 0,21$$

Donc
$$P(E \cap F) = 0.21$$

et la probabilité que la personne choisie écoute le démarcheur et soit une femme est de 0,21

(b) La probabilité que la personne choisie écoute les explications du démarcheur est P(E).

D'après la formule des probabilités totales puis que H et F forment une partition :

$$P(E) = P(H \cap E) + P(F \cap E) = P(H) \times P_H(E) + P(F) \times P_F(E)$$

$$P(E) = 0.65 \times 0.3 + 0.35 \times 0.6 = 0.195 + 0.21 = 0.405$$

Donc la probabilité que la personne choisie écoute le démarcheur est bien égale à 0,405

(c) Le démarcheur s'adresse à une personne qui l'écoute; la probabilité que ce soit un homme est $P_E(H)$.

$$P_E(H) = \frac{P(E \cap H)}{P(E)} = \frac{0,65 \times 0,3}{0,405} \approx 0,48$$

Donc la probabilité que le demarcheur s'adresse à un homme est de 0,48

Partie B

On note X la variable aléatoire qui comptabilise le nombre de souscriptions réalisées par un employé donné un jour donné.

1. Les relevés réalisés au cours des premières journées permettent de constater que 12 % des personnes interrogées souscrivent à ce nouveau forfait, donc la <u>probabilité</u> qu'une personne interrogée souscrive un nouveau forfait est 0,12.

Chaque employé de l'opérateur effectue 60 appels par jour.

On suppose le fichier suffisamment important pour que les choix soient considérés réalisés de façon indépendante et dans des conditions identiques.

La variable aléatoire X qui comptabilise le nombre de souscriptions réalisées par un employé donné un jour donné suit donc la loi binomiale de paramètres n=60 et p=0,12

2. La probabilité que l'employé obtienne 5 souscriptions est P(X = 5).

Pour une variable aléatoire X suivant la loi $\mathscr{B}(n,p)$ on sait que $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$,

D'où P(X = 5) =
$$\binom{60}{5}$$
0, $12^5(1-0,12)^{60-5} \approx 0,120$

Donc la probabilité que l'employé obtienne 5 souscriptions un jour donné est d'environ 0,12

3. La probabilité que l'employé obtienne au moins une souscription un jour donné est $P(X \ge 1)$.

Comme
$$P(X \ge 1) = 1 - P(X < 1) = 1 - P(X = 0)$$
.

Et
$$P(X = 0) = {60 \choose 0} 0, 12^{0} (1 - 0, 12)^{60 - 0} \approx 0,0005$$

D'où P(X ≥ 1) ≈ 0,9995

Donc la probabilité que l'employé obtienne au moins une souscription un jour donné est d'environ de 0,9995