

# DS 2 - lundi 23 novembre

Durée: 2 heures

TOTAL sur 20 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5

/ 6 /5 / 5 / 3 /3

Exercice 1. 6 points

Soit la suite numérique  $(u_n)$  définie sur l'ensemble des entiers naturels  $\mathbb N$  par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{5}u_n + 3 \times 0, 5^n \quad \text{pour tout entier naturel } n \end{cases}$$

1. (a) A l'aide de la calculatrice, compléter le tableau des valeurs de la suite  $(u_n)$  approchées à  $10^{-2}$  près :

| n     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-------|---|---|---|---|---|---|---|---|---|
| $u_n$ | 2 |   |   |   |   |   |   |   |   |

- (b) D'après ce tableau, énoncer une conjecture sur le sens de variation de la suite  $(u_n)$ .
- 2. (a) Démontrer, par récurrence, que pour tout entier naturel n non nul on a  $u_n \ge \frac{15}{4} \times 0.5^n$ .
  - (b) En déduire que, pour tout entier naturel n non nul,  $u_{n+1} u_n \le 0$ .
  - (c) Démontrer que la suite  $(u_n)$  est convergente.
- 3. Soit  $(v_n)$  la suite définie sur  $\mathbb{N}$  par  $v_n = u_n 10 \times 0,5^n$ .
  - (a) Démontrer que la suite  $(v_n)$  est une suite géométrique de raison  $\frac{1}{5}$ . On précisera le premier terme de la suite  $(v_n)$ .
  - (b) En déduire, que pour tout entier naturel n,  $u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0,5^n$ .
  - (c) Déterminer la limite de la suite  $(u_n)$



# Correction - Baccalauréat S Antilles-Guyane 19 juin 2014

1. (a) À l'aide d'une calculatrice, on obtient les valeurs suivantes :

| n     | 0 | 1   | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|-------|---|-----|------|------|------|------|------|------|------|
| $u_n$ | 2 | 3,4 | 2,18 | 1,19 | 0,61 | 0,31 | 0,16 | 0,08 | 0,04 |

(b) Au vu du tableau précédent, on peut conjecturer que la suite  $(u_n)$  est décroissante à partir du rang 1.

2. (a) Soit  $\mathscr{P}(n)$  la propriété : «  $u_n \ge \frac{15}{4} \times 0.5^n$  ». Montrons par récurrence que  $\mathscr{P}(n)$  est vraie pour tout entier naturel n non nul.

■ Initialisation. On a  $u_1 = 3.4$  et  $\frac{15}{4} \times 0.5 = 1.875$ , donc  $\mathscr{P}(1)$  est vraie.

■ **Hérédité**. Soit n entier naturel non nul, et  $\mathscr{P}(n)$  vraie, c'est-à-dire que  $: u_n \ge \frac{15}{4} \times 0.5^n$  on doit alors démontrer que la propriété  $\mathscr{P}(n+1)$  est vraie, càd que  $u_{n+1} \ge \frac{15}{4} \times 0.5^{n+1}$ . On sait que

$$\begin{array}{rcl} u_n & \geqslant & \frac{15}{4} \times 0.5^n & \text{donc, en multipliant par } \frac{1}{5}: \\ & \frac{1}{5} u_n & \geqslant & \frac{3}{4} \times 0.5^n & \text{puis, en ajoutant membre à membre } 3 \times 0.5^n: \\ & \frac{1}{5} u_n + 3 \times 0.5^n & \geqslant & \frac{3}{4} \times 0.5^n + 3 \times 0.5^n & \text{c'est-à-dire}: \\ & u_{n+1} & \geqslant & \frac{15}{4} \times 0.5^n & \end{array}$$

Or, pour tout entier naturel n,  $0.5^n \ge 0.5^{n+1}$ , on en déduit donc que :  $u_{n+1} \ge \frac{15}{4} \times 0.5^{n+1}$  et la propriété  $\mathcal{P}(n)$  est donc héréditaire.

• Conclusion. La propriété  $\mathcal{P}(n)$  est initialisée et héréditaire, elle est donc vraie pour tout entier naturel n non nul.

Donc pour tout naturel non nul  $u_n \ge \frac{15}{4} \times 0.5^n$ .



(b) Pour tout entier naturel n non nul:

$$u_{n+1} - u_n = \frac{1}{5}u_n + 3 \times 0.5^n - u_n$$
$$= 3 \times 0.5^n - \frac{4}{5}u_n$$
$$= \frac{4}{5} \left(\frac{15}{4} \times 0.5^n - u_n\right)$$

D'après la question 1a, pour tout naturel non nul  $u_n \ge \frac{15}{4} \times 0.5^n \iff 0 \ge \frac{15}{4} \times 0.5^n - u_n$  Alors cela entraı̂ne que pour tout n entier,  $u_{n+1} - u_n \le 0$ .

- (c) D'après la question précédente la suite  $(u_n)$  est décroissante à partir d'un certain rang. D'après 2a, pour tout entier naturel n non nul,  $u_n \geqslant \frac{15}{4} \times 0.5^n > 0$ , la suite est donc minorée. On en déduit, d'après le théorème de convergence des suites monotones, que la suite  $(u_n)$  est convergente.
- 3. (a) Soit  $n \in \mathbb{N}$ , alors :

$$v_{n+1} = u_{n+1} - 10 \times 0.5^{n+1}$$

$$= \frac{1}{5}u_n + 3 \times 0.5^n - 10 \times 0.5 \times 0.5^n$$

$$= \frac{1}{5}u_n - 2 \times 0.5^n$$

$$= \frac{1}{5}(u_n - 10 \times 0.5^n)$$

$$= \frac{1}{5}v_n.$$

Et 
$$v_0 = u_0 - 10 \times 0.5^0 = 2 - 10 = -8$$

Donc la suite  $(v_n)$  est donc géométrique de raison  $\frac{1}{5}$  et de premier terme -8

(b) La suite  $(v_n)$  étant géométrique, on a, pour tout entier naturel  $n: v_n = -8\left(\frac{1}{5}\right)^n$ . On en déduit que  $-8 \times \left(\frac{1}{5}\right)^n = u_n - 10 \times 0.5^n$ 

Donc 
$$u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0.5^n$$

(c) 
$$-1 < \frac{1}{5} < 1$$
, donc  $\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$ ,

de même : 
$$-1 < 0.5 < 1$$
,

donc par somme, 
$$\lim_{n \to +\infty} 0.5^n = 0$$
.

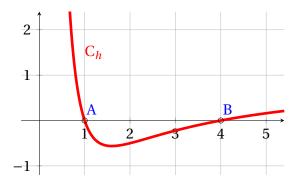
On en déduit par opérations sur les limites que 
$$\lim_{n\to+\infty}u_n=0$$



Exercice 2. 5 points

### Partie A

Dans le plan muni d'un repère orthonormé  $(0,\vec{i},\vec{j})$ , on désigne par  $\mathscr{C}_h$  la courbe représentative de la fonction h définie sur l'intervalle ]0;  $+\infty[$  par  $:h(x)=1+\frac{b}{x}+\frac{c}{x^2}$  où b et c sont des réels fixés.



On précise que la courbe  $\mathscr{C}_h$  passe par les points A(1; 0) et B(4; 0).

- 1. À l'aide des données ci-dessus, donner les valeurs de h(1) et h(4).
- 2. Exprimer h(1) et h(4) à l'aide de b et c, puis déterminer les valeurs de b et c.
- 3. En déduire, pour tout réel x strictement positif,  $h(x) = \frac{x^2 5x + 4}{x^2}$ .

#### Partie B

Soit f la fonction définie sur l'intervalle ]0;  $+\infty[$  par  $: f(x) = x - 5\ln x - \frac{4}{x}.$ 

- 1. Démontrer que, pour tout réel x strictement positif, f'(x) = h(x).
- 2. En déduire le tableau de variation de la fonction f en précisant les valeurs particulières.

# Correction - tiré du baccalauréat S Amérique du Sud 24 novembre 2015

#### Partie A

Dans le plan muni d'un repère orthonormé  $(0,\vec{i},\vec{j})$ , on désigne par  $\mathscr{C}_h$  la courbe représentative de la fonction h définie sur l'intervalle ]0;  $+\infty[$  par :  $h(x)=1+\frac{b}{x}+\frac{c}{x^2}$  où b et c sont des réels fixés.

- 1. La courbe  $\mathscr{C}_u$  passe par le point A(1;0) donc h(1)=0. La courbe  $\mathscr{C}_u$  passe par le point B(4;0) donc h(4)=0.
- 2. D'après la première question h(1) = 0 ce qui équivaut à  $1 + \frac{b}{1} + \frac{c}{1^2} = 0 \iff b+c = -1$ . De même h(4) = 0 équivaut à  $1 + \frac{b}{4} + \frac{c}{4^2} = 0 \iff 1 + \frac{b}{4} + \frac{c}{16} = 0 \iff 4b+c = -16$ .



On résout le système 
$$\begin{cases} b+c &= -1 \\ 4b+c &= -16 \end{cases} \iff \begin{cases} c &= -1-b \\ 4b-1-b &= -16 \end{cases} \iff \begin{cases} c=4 \\ b=-5 \end{cases}$$
 Donc 
$$b=-5 \text{ et } c=4$$

3. Alors pour tout 
$$x$$
 de  $]0$ ;  $+\infty[$ ,  $h(x) = 1 - \frac{5}{x} + \frac{4}{x^2} = \frac{x^2 - 5x + 4}{x^2}$   
Donc pour tout  $x$  de  $]0$ ;  $+\infty[$ ,  $h(x) = \frac{x^2 - 5x + 4}{x^2}$ 

## Partie B

Soit f la fonction définie sur l'intervalle ] 0;  $+\infty$  [ par :  $f(x) = x - 5 \ln x - \frac{4}{x}$ .

1. La fonction f est dérivable sur  $]0; +\infty[$  comme somme de fonctions dérivables et :

$$f'(x) = 1 - 5 \times \frac{1}{x} - 4 \times \left(-\frac{1}{x^2}\right) = 1 - \frac{5}{x} + \frac{4}{x^2} = h(x)$$

Donc pour tout x de  $]0; +\infty[, f'(x) = h(x)]$ 

2. On a 
$$f'(x) = h(x) = \frac{x^2 - 5x + 4}{x^2} = \frac{(x-1)(x-4)}{x^2}$$

on peut donc déterminer le signe de h(x) sur  $]0; +\infty[$  et donc le signe de f'(x).

| x                        | 0 |   | 1 |   | 4 |   | +∞ |
|--------------------------|---|---|---|---|---|---|----|
| x-1                      |   | _ | 0 | + |   | + |    |
| x-4                      |   | _ |   | _ | 0 | + |    |
| $x^2$                    |   | + |   | + |   | + |    |
| $\frac{(x-1)(x-4)}{x^2}$ |   | + | 0 | _ | 0 | + |    |

h(x) s'annule pour x=1 et x=4; f(1)=-3 et  $f(4)=3-5\ln 4=3-10\ln 4\approx -3,93$ On dresse le tableau de variations de la fonction f:

| x                | 0 |   | 1  |   | 4         | +∞ |
|------------------|---|---|----|---|-----------|----|
| f'(x) = h(x)     |   | + | 0  | _ | 0         | +  |
| Variation de $f$ |   |   | -3 | 3 | – 10 ln(2 | 2) |



# **Exercice 3.** 5 points

On considère la fonction f définie sur [0; 4[par: f(x) = 10x + ln(4-x) - ln4].

On note  $\mathscr{C}_f$  sa courbe représentative dans un repère.

- 1. Calculer f(0).
- 2. (a) On appelle f' la fonction dérivée de f sur l'intervalle [0 ; 4[. Montrer que, pour tout x appartenant à l'intervalle [0 ; 4[, on a :  $f'(x) = \frac{39-10x}{4-x}$ .
  - (b) Étudier le signe de f'(x) pour tout x appartenant à l'intervalle [0; 4[.
  - (c) Justifier que la fonction f atteint un maximum en 3,9. Donner une valeur approchée au dixième de ce maximum.
- 3. Montrer qu'il existe un point de  $C_f$  en lequel la tangente est parallèle à la droite  $\Delta$  d'équation y = 9x + 1?

# Correction - tiré du baccalauréat STI2D Polynésie 19 juin 2019

On considère la fonction f définie sur [0; 4[par: f(x) = 10x + ln(4-x) - ln 4].

- 1.  $f(0) = 10 \times 0 + \ln(4 0) \ln 4 = 0$ .
- 2. (a) f est dérivable sur [0; 4[ comme somme de fonctions dérivables sur [0; 4[ Alors  $f'(x) = 10 + \frac{1}{4-x} = \frac{10(4-x)+1}{4-x} = \frac{40-10x+1}{4-x} = \frac{39-10x}{4-x}.$ 
  - (b) On a  $f'(x) = \frac{39 10x}{4 x}$ .

On en déduit par tableau de signes le signe de f'(x):

| x                        | 0 |   | 3.9 |   |  |  |
|--------------------------|---|---|-----|---|--|--|
| 39 - 10x                 |   | + | 0   | _ |  |  |
| 4-x                      |   | + |     | + |  |  |
| $\frac{39 - 10x}{4 - x}$ |   | + | 0   | _ |  |  |

(c) Du tableau précédent les variationss de la fonction f

| x     | 0 | 3.9   | 4 |
|-------|---|-------|---|
| f'(x) |   | + 0 - |   |
| f     |   | 35.3  | * |



Donc f est strictement croissante sur  $[0\;;\;3,9]$ , puis strictement décroissante sur  $[3,9\;;\;4[$  f admet donc sur l'intervalle  $[0\;;\;4[$  un maximum  $f(3,9)=10\times3,9+\ln(4-3,9)-\ln4\approx35,31, \text{ soit }35,3 \text{ au dixième près.}$ 

3. On doit chercher un point de  $C_f$  en lequel la tangente est parallèle à la droite  $\Delta$  d'équation y=9x+1

cela revient à chercher  $x \in ]0;4[$  telque f'(x) = 9

$$f'(x) = 9 \iff \frac{39 - 10x}{4 - x} = 9$$

$$\iff 39 - 10x = 9(4 - x)$$

$$\iff 39 - 10x = 36 - 9x$$

$$\iff 3 = x$$

L'abscisse du point chérché est 3, déterminons son ordonné

$$f(3) = 10 \times 3 + \ln(4-3) - \ln 4 = 30 + \ln(1) - \ln(4) = 30 - \ln(4) = 30 - 2\ln(2)$$

Donc | au point A(3;30 –  $2\ln(2)$ , la courbe  $C_f$  admet une tangente parallèle à la droite  $\Delta$ 



Exercice 4. 3 points

Une société fabrique des yaourts aux fruits avec dix parfums différents. Le directeur des ventes propose de constituer des lots de quatre pots de parfums tous différents.

- 1. Combien de lots distincts peut-on former de cette façon?
- 2. Combien de lots distincts peut-on former de cette façon sachant qu'ils ne doivent pas contenir simultanément un pot à la fraise et un à la framboise?

## Correction

1. Comme on doit faire un lot avec 4 yaourts avec des parfums tous différents, il y a 10 parfums possibles.

Cela est équivalent à un tirage sans remise et sans ordre, il y a alors combinaison de 4 élèments parmi 10, donc  $\binom{10}{4} = 210$ 

D'où il y a 210 lots différents possibles

2. On veut donc faire des lots de 4 yaourts qu'ils ne doivent pas contenir simultanément un pot à la fraise et un àla framboise.

 $\begin{tabular}{ll} méthode 1: avec le complémentaire \\ \end{tabular}$ 

Il prendre l'ensemble des lots possibles auquel on soustrait le cas d'avoir à la fois fraise et frambroise. Pour avoir un lot avec à la fois fraise et frambroise : il faut 1 yaourt fraise, 1 yaourt framboise et 2 autres parfums parmi les 8 qui restent.

Alors 
$$\binom{8}{4} - \binom{1}{1} \binom{1}{1} \binom{8}{2} = 182$$

méthode 2 : au cas par cas

voici les trois possibilités

- 1 fraise et 3 autres parfums parmi les 8 qui restent
- 1 framboise et 3 autres parfums parmi les 8 qui restent
- 4 autres parfums parmi les 8 qui restent

Cela donne 
$$\binom{8}{4} + \binom{1}{1} \binom{8}{3} + \binom{1}{1} \binom{8}{3} = 182$$

Donc il y a 182 lots différents possibles sans contenir simultanément un pot à la fraise et un à la framb



#### Exercice 5. 3 points

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse et justifier la réponse donnée.

- 1. On considère l'équation suivante :  $ln(x^2) ln\left(\frac{x^5}{e}\right) + ln(2) = ln(2x) + 5$ 
  - AFFIRMATION 1 :  $\frac{1}{2}$  est l'unique solution de cette équation.
- 2. Soit f la fonction définie sur  $\mathbb{R}$  par :  $f(x) = 3e^{-2x+1}$

AFFIRMATION 2 : La fonction F définie sur  $\mathbb{R}$  par :  $F(x) = -6e^{-2x+1} + 6$  est la primitive de f qui s'annule en  $\frac{1}{2}$ .

3. On considère une suite  $(u_n)$ , définie sur  $\mathbb N$  dont aucun terme n'est nul. On définit alors la suite  $(v_n)$  sur  $\mathbb{N}$  par  $v_n = -\frac{2}{u_n}$ .

AFFIRMATION 3 : Si  $(u_n)$  est minorée par 2, alors  $(v_n)$  est minorée par -1.

## Correction

1. Pour tout réel x strictement positif :

$$ln(x^{2}) - ln\left(\frac{x^{5}}{e}\right) + ln(2) = ln(2x) + 5 \iff 2ln(x) - (5ln(x) - ln(e)) + ln(2) = ln(2) + ln(x) + 5$$

$$\iff 2ln(x) - 5ln(x) + 1 - ln(x) = 5$$

$$\iff -4ln(x) = 4$$

$$\iff ln(x) = -1$$

$$\iff x = e^{-1}$$

$$\iff x = \frac{1}{e}$$

## L'affirmation 1 est vraie

2. La dérivée de la fonction F est la fonction F' définie sur  $\mathbb{R}$  par  $F'(x) = -6 \times (-2)e^{-2x+1} = 12e^{-2x+1}$ Pour tout x, on a  $F'(x) \neq f(x)$  donc la fonction F n'est pas une primitive de la fonction f.

L'affirmation 2 est fausse

3. On a une suite  $(u_n)$ , définie sur  $\mathbb N$  dont aucun terme n'est nul et la suite  $(v_n)$  sur  $\mathbb{N}$  par  $v_n = -\frac{2}{u_n}$ .

AFFIRMATION 3 : Si  $(u_n)$  est minorée par 2, alors  $(v_n)$  est minorée par -1.

$$(u_n)$$
 est minorée par  $2$   $\implies$  pour tout entier  $n \in \mathbb{N}, \ u_n > 2$   $\implies$  pour tout entier  $n \in \mathbb{N}, \ \frac{1}{u_n} < \frac{1}{2}$ 

car la fonction inverse est décroissante sur ]0;+ $\infty$ [

- $\implies \text{ pour tout entier } n \in \mathbb{N}, \ -\frac{2}{u_n} > -\frac{2}{2} \quad \text{car on multiplie par } -2$   $\implies \text{ pour tout entier } n \in \mathbb{N}, \ v_n > -1 \quad \text{car } v_n = -\frac{2}{u_n}$
- $(v_n)$  est minorée par -1.

## L'affirmation 3 est vraie