

DS 1 - lundi 7 octobre

Durée: 50 min

Exercice 1. 10 points

On considère la suite de nombres réels (u_n) définie sur \mathbb{N} par : $u_0 = -1$, $u_1 = \frac{1}{2}$ et, pour tout entier naturel $n, u_{n+2} = u_{n+1} - \frac{1}{4}u_n$.

- 1. Calculer u_2 et en déduire que la suite (u_n) n'est ni arithmétique ni géométrique.
- 2. On définit la suite (v_n) en posant, pour tout entier naturel $n: v_n = u_{n+1} \frac{1}{2}u_n$.
 - (a) Calculer v_0 .
 - (b) Exprimer v_{n+1} en fonction de v_n .
 - (c) En déduire que la suite (v_n) est géométrique de raison $\frac{1}{2}$ puis exprimer v_n en fonction de n.
- 3. On définit la suite (w_n) en posant, pour tout entier naturel $n: w_n = \frac{u_n}{v_n}$.
 - (a) Calculer w_0 .
 - (b) En utilisant l'égalité $u_{n+1} = v_n + \frac{1}{2}u_n$, exprimer w_{n+1} en fonction de u_n et de v_n .
 - (c) En déduire que pour tout n de \mathbb{N} , $w_{n+1} = w_n + 2$. Que peut-on en déduire quant à la nature de la suite (w_n) ?
 - (d) Exprimer w_n en fonction de n.
- 4. Déduire des questions 2c et 3d que, pour tout entier naturel n : $u_n = \frac{2n-1}{2^n}$
- 5. Pour tout entier naturel n, on pose : $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$. Démontrer par récurrence que pour tout n de \mathbb{N} : $S_n = 2 \frac{2n+3}{2^n}$.

Exercice 2. 2 points

Démontrer par récurrence que, pour tout $n \in \mathbb{N}^*$,

$$1+3+5+\cdots+(2n-1)=n^2$$

Exercice 3. 8 points

On considère la fonction f définie et dérivable sur l'ensemble \mathbb{R} des nombres réels par $f(x) = x + 1 + \frac{x}{e^x}$. On note \mathscr{C} sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$

- 1. Soit *g* la fonction définie et dérivable sur l'ensemble \mathbb{R} par $g(x) = 1 x + e^x$.
 - (a) Dresser, en le justifiant, le tableau donnant les variations de la fonction g sur \mathbb{R} (les limites de g aux bornes de son ensemble de définition ne sont pas attendues).
 - (b) En déduire le signe de g(x).
- 2. On appelle f' la dérivée de la fonction f sur \mathbb{R} . Démontrer que, pour tout réel x, $f'(x) = e^{-x}g(x)$.
- 3. En déduire le tableau de variation de la fonction f sur \mathbb{R} .
- 4. (a) Démontrer que la droite T d'équation y = 2x + 1 est tangente à la courbe $\mathscr C$ au point d'abscisse 0.
 - (b) Etudier la position relative de la courbe $\mathscr C$ et de la droite T.