

DS 1 - lundi 7 octobre

Durée: 50 min

Nom: Prénom:

Exercice 1. 10 points

On considère la suite de nombres réels (u_n) définie sur $\mathbb N$ par : $u_0=-1$, $u_1=\frac12$ et, pour tout entier naturel $n,u_{n+2}=u_{n+1}-\frac14u_n$.

- 1. Calculer u_2 et en déduire que la suite (u_n) n'est ni arithmétique ni géométrique.
- 2. On définit la suite (v_n) en posant, pour tout entier naturel $n: v_n = u_{n+1} \frac{1}{2}u_n$.
 - (a) Calculer v_0 .
 - (b) Exprimer v_{n+1} en fonction de v_n .
 - (c) En déduire que la suite (v_n) est géométrique de raison $\frac{1}{2}$ puis exprimer v_n en fonction de n.
- 3. On définit la suite (w_n) en posant, pour tout entier naturel $n: w_n = \frac{u_n}{v_n}$.
 - (a) Calculer w_0 .
 - (b) En utilisant l'égalité $u_{n+1} = v_n + \frac{1}{2}u_n$, exprimer w_{n+1} en fonction de u_n et de v_n .
 - (c) En déduire que pour tout n de \mathbb{N} , $w_{n+1} = w_n + 2$. Que peut-on en déduire quant à la nature de la suite (w_n) ?
 - (d) Exprimer w_n en fonction de n.
- 4. Déduire des questions 2c et 3d que, pour tout entier naturel n : $u_n = \frac{2n-1}{2^n}$
- 5. Pour tout entier naturel n, on pose : $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$. Démontrer par récurrence que pour tout n de \mathbb{N} : $S_n = 2 \frac{2n+3}{2^n}$.

On sait que (u_n) est définie sur $\mathbb N$ par : $u_0=-1$, $u_1=\frac12$ et, pour tout entier naturel $n,u_{n+2}=u_{n+1}-\frac14u_n$.

1. \circ Déterminons u_2 [0.5]

D'après la définition $u_2 = u_1 - \frac{1}{4}u_0 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$.

$$\underline{\text{Donc}} \quad u_2 = \frac{3}{4}.$$

 \circ Nature de la suite (u_n) [0.5]

• Comme
$$\frac{u_1}{u_0} = -\frac{1}{2}$$
 et $\frac{u_2}{u_1} = \frac{\frac{3}{4}}{\frac{1}{2}} = \frac{3}{2}$ alors $\frac{u_1}{u_0} \neq \frac{u_2}{u_1}$

Donc la suite (u_n) n'est pas géométrique

• Comme
$$u_1 - u_0 = -\frac{1}{2} - (-1) = \frac{3}{2}$$
 et $u_2 - u_1 = \frac{3}{4} - \frac{1}{2}$ alors $u_1 - u_0 \neq u_2 - u_1$
Donc la suite (u_n) n'est pas arithmétique

 $\underline{\text{Donc}}$: la suite (u_n) n'est ni arithmétique ni géométrique.

2. On a la suite (v_n) : pour tout entier naturel $n: v_n = u_{n+1} - \frac{1}{2}u_n$.

(a)
$$v_0 = u_1 - \frac{1}{2}u_0 = \frac{1}{2} - \frac{1}{2} \times (-1) = 1.$$
 [0.5]
Donc $v_0 = 1.$

(b) Exprimons v_{n+1} en fonction de v_n . [1]

On a pour tout naturel n,

$$v_{n+1} = u_{n+2} - \frac{1}{2}u_{n+1} = u_{n+1} - \frac{1}{4}u_n - \frac{1}{2}u_{n+1} = \frac{1}{2}u_{n+1} - \frac{1}{4}u_n = \frac{1}{2}\left(u_{n+1} - \frac{1}{2}u_n\right) = \frac{1}{2}v_n.$$

$$\underline{\text{Donc}} v_{n+1} = \frac{1}{2}v_n.$$

(c) Comme $v_{n+1} = \frac{1}{2}v_n$ [1]

On peut en déduire que la suite (v_n) est une suite géométrique de premier terme $v_0 = 1$

et de raison
$$\frac{1}{2}$$
.

On a donc quel que soit $n \in \mathbb{N}$, $v_n = \left(\frac{1}{2}\right)^n = \frac{1}{2^n}$.

3. On a la suite (w_n) : pour tout entier naturel n: $w_n = \frac{u_n}{v_n}$.

(a)
$$w_0 = \frac{u_0}{v_0} = \frac{-1}{1} = -1.$$
 [0.5] $\underline{\text{Donc}} \left[w_0 = -1. \right]$

(b) On sait que pour tout
$$n$$
, $u_{n+1} = v_n + \frac{1}{2}u_n$ et $w_n = \frac{u_n}{v_n}$. [1]

Pour tout n , $w_{n+1} = \frac{u_{n+1}}{v_{n+1}} = \frac{v_n + \frac{1}{2}u_n}{\frac{1}{2}v_n} = \frac{2v_n + u_n}{v_n} = 2 + \frac{u_n}{v_n}$

$$\boxed{\text{Donc}} w_{n+1} = 2 + \frac{u_n}{v_n}$$

- (c) On sait que pour tout n, $\frac{u_n}{v_n} = w_n$ et $w_{n+1} = 2 + \frac{u_n}{v_n}$ [0.5] donc l'égalité ci-dessus s'écrit : $w_{n+1} = 2 + w_n$.
- (d) On sait que pour tout n, $w_{n+1} = 2 + w_n$ [1]

 On peut donc en déduire que la suite (w_n) est une suite arithmétique de premier terme $w_0 = -1$ et de raison 2.

Donc pour tout
$$n$$
, $w_n = w_0 + n \times 2 = 2n - 1$.

4. Montrons que pour tout entier naturel n $u_n = \frac{2n-1}{2^n}$.

On a trouvé que $w_n = 2n-1 = \frac{u_n}{v_n} = \frac{u_n}{\frac{1}{2^n}} = 2^n \times u_n$.

D'où
$$u_n = \frac{w_n}{2^n} \operatorname{car} 2^n \neq 0$$
 quel que soit $n \in \mathbb{N}$.
Alors $u_n = \frac{2n-1}{2^n}$

Donc
$$u_n = \frac{2n-1}{2^n}$$

5. On a pour tout entier naturel
$$n$$
, on pose : $S_n = \sum_{k=0}^{k=n} u_k = u_0 + u_1 + \dots + u_n$. [2]

Démontrons par récurrence la propriété : \mathcal{P}_n : $S_n = 2 - \frac{2n+3}{2^n}$

- <u>Initialisation</u>: $S_0 = u_0 = -1$ et $2 \frac{2 \times 0 + 3}{2^0} = 2 \frac{3}{1} = 2 3 = -1$. La formule est vraie au rang 0.
- <u>Hérédité</u>: supposons qu'il existe un naturel n tel que : \mathcal{P}_n est vraie $S_k = \sum_{i=0}^n u_i = u_0 + u_1 + \dots + u_n = 2 \frac{2n+3}{2^n}.$

Montrons que la propriété : \mathcal{P}_{n+1} est vraie

On a
$$S_{n+1} = S_n + u_{n+1}$$

$$= 2 - \frac{2n+3}{2^n} + \frac{2(n+1)-1}{2^{n+1}}$$

$$= 2 + \frac{-4n-6+2n+1}{2^{n+1}}$$

$$= 2 + \frac{-2n-5}{2^{n+1}}$$

$$= 2 - \frac{2n+5}{2^{n+1}}$$

$$= 2 - \frac{2(n+1)+3}{2^{n+1}}.$$
Donc $S_{n+1} = 2 - \frac{2(n+1)+3}{2^{n+1}}.$

La formule est vraie au rang n + 1.

• <u>Conclusion</u>: Par initialisation au rang 0 et par héréditée, on a donc démontré par récurrence que pour tout n de \mathbb{N} : $S_n = 2 - \frac{2n+3}{2^n}$.

Exercice 2. 2 points

Démontrer par récurrence que, pour tout $n \in \mathbb{N}^*$,

$$1+3+5+\cdots+(2n-1)=n^2$$
.

Correction

Démontrons par récurrence que,

[0.5]

pour tout $n \in \mathbb{N}^*$, la prorpiété \mathcal{P}_{n+1} : $S_n = 1 + 3 + 5 + \cdots + (2n-1) = n^2$.

- <u>Initialisation</u>: Pour n = 1, la somme S_1 vaut 1 et $1^2 = 1$ donc $S_1 = 1^2$ [0.5] la propriété est vraie pour le rang n = 1.
- <u>Hérédité</u>: on suppose P_n vraie pour un n quelconque, donc $S_n = n^2$. [0.5] Montrons que la propriété: \mathcal{P}_{n+1} est vraie

On a
$$S_{n+1} = S_n + (2n+1) = n^2 + 2n + 1 = (n+1)^2$$

Donc \mathcal{P}_{n+1} est vraie

• Conclusion : Par initialisation au rang 1 et par héréditée, on a donc démontré par récurrence que la propriété est vraie pour tout $n \in \mathbb{N}^*$

Donc tout
$$n \in \mathbb{N}^*$$
 1+3+5+...+ (2n-1) = n^2 [0.5]

Exercice 3. 8 points

On considère la fonction f définie et dérivable sur l'ensemble \mathbb{R} des nombres réels par $f(x) = x + 1 + \frac{x}{e^x}$. On note \mathscr{C} sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$

- 1. Soit *g* la fonction définie et dérivable sur l'ensemble \mathbb{R} par $g(x) = 1 x + e^x$.
 - (a) Dresser, en le justifiant, le tableau donnant les variations de la fonction g sur \mathbb{R} (les limites de g aux bornes de son ensemble de définition ne sont pas attendues).
 - (b) En déduire le signe de g(x).
- 2. On appelle f' la dérivée de la fonction f sur \mathbb{R} . Démontrer que, pour tout réel x, $f'(x) = e^{-x}g(x)$.
- 3. En déduire le tableau de variation de la fonction f sur \mathbb{R} .
- 4. (a) Démontrer que la droite T d'équation y = 2x + 1 est tangente à la courbe $\mathscr C$ au point d'abscisse 0.
 - (b) Etudier la position relative de la courbe $\mathscr C$ et de la droite T.

1. On a g la fonction définie sur l'ensemble \mathbb{R} par $g(x) = 1 - x + e^x$. [2]

g est dérivable sur $\mathbb R$ comme combinaison simple de fonctions qui le sont,

et pour tout réel $x : g'(x) = -1 + e^x$.

On a alors $g'(x) \ge 0$ \Leftrightarrow $e^x \ge 1$ $\Leftrightarrow x \ge 0$.

Le tableau de variations de g est donc :

x	$-\infty$	0		+∞
g'(x)	_	0	+	
Variation de g				<u></u>

On déduit du tableau précédent que, pour tout réel x, $g(x) \ge 2 > 0$. [0.5]

2. On a la fonction
$$f$$
 définie sur l'ensemble \mathbb{R} par $f(x) = x + 1 + xe^{-x}$. [2]

La fonction f est dérivable sur $\mathbb R$ comme combinaison simple de fonctions qui le sont,

Pour tout réel
$$x$$
, on a $f = u + v \times w$ d'où $f = u' + (v'w + w'v)$

avec
$$u(x) = x + 1$$
 $u'(x) = 1$
 $v(x) = x$ $v'(x) = 1$
 $w(x) = e^{-x}$ $w'(x) = -e^{-x}$

D'où
$$f'(x) = 1 + (1 \times e^{-x} + (-e^{-x}) \times x)$$

 $= 1 + e^{-x}(1 - x)$
 $= e^{-x}(e^x + (1 - x))$
 $= e^{-x}(1 - x + e^x)$
 $= e^{-x}g(x)$.

Donc pour tout nombre réel $x : f'(x) = e^{-x}g(x)$.

3. On a démontré que pour tout nombre réel x: $f'(x) = e^{-x}g(x)$.

[1.5]

On a vu plus haut que, pour tout réel x, g(x) > 0,

et comme par ailleurs $e^{-x} > 0$

Donc on en déduit que f'(x) > 0.

On obtient alors le tableau de variations suivant :

x	$-\infty$	+∞
f'(x)		+
Variation de f		

4. (a) L'équation de la tangente au point d'abscisse
$$0$$
 : T_0 : $y = f'(0)(x-0) + f(0)$ [0.5] Puisque $f'(x) = e^{-x}g(x)$, on obtient $f'(0) = 2$

Puisque
$$f(x) = x + 1 + \frac{x}{e^x}$$
, on obtient $f(0) = 1$

Alors
$$T_0: y = 2(x - 0) + 1$$

$$Donc T_0: y = 2x + 1$$

(b) On pose pour tout réel
$$x$$
, $k(x) = f(x) - (2x + 1)$, [1.5]

Alors
$$k(x) = x + 1 + \frac{x}{e^x} - (2x + 1)$$

$$= \frac{x}{e^x} - x$$

$$= \frac{x}{e^x} (1 - e^x)$$

Dressons alors un tableau de signes :

X	$-\infty$		0		+∞
x		-	0	+	
e^x		+		+	
$1-e^x$		+	0	-	
k(x)		_	0	_	

On en déduit que ${\mathscr C}$ est située en dessous de T.