

La calculatrice est autorisée - Durée : 1h50

Exercice 1.

Pierre pratique la course à pied plusieurs fois par semaine. Il a trois parcours différents, notés A, B et C et deux types de séances d'entraînement : Endurance, notée E et Vitesse, notée V.

Chaque fois que Pierre va courir, il choisit un parcours (A, B ou C), puis un type d'entraînement (E ou V).

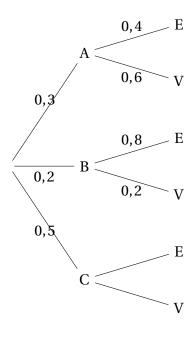
Si A et B désignent deux évènements d'une même expérience aléatoire, alors on notera \overline{A} l'évènement contraire de A, p(A) la probabilité de l'évènement A, et $p_A(B)$ la probabilité de l'évènement B sachant que A est réalisé, avec $p(A) \neq 0$.

Pierre va courir aujourd'hui. On considère les évènements suivants :

- A : « Pierre choisit le parcours A »
- B : « Pierre choisit le parcours B »
- C : « Pierre choisit le parcours C »
- E : « Pierre fait une séance d'endurance »
- V : « Pierre fait une séance de vitesse »

On sait que :

- Pierre choisit le parcours A dans 30 % des cas et le parcours B dans 20 % des cas ;
- si Pierre choisit le parcours A, alors il fait une séance d'endurance dans 40 % des cas ;
- si Pierre choisit le parcours B, alors il fait une séance d'endurance dans 80 % des cas.
- 1. Faire un arbre de probabilité décrivant la situation ci-dessus.



2. (a) Donner la valeur de $p_A(E)$.

On sait que si Pierre choisit le parcours A, alors il fait une séance d'endurance dans 40 % des cas)

Donc
$$p_A(E) = 0.4$$

(b) Calculer $p_{\rm B}({\rm V})$.

On saait que $p_B(E) = 0.8$ et E et V forme une partition

D'où
$$p_B(V) = 1 - p_B(E) = 1 - 0.8 = 0.2$$

Donc
$$p_B(V) = 0.2$$

3. Déterminer la probabilité que Pierre choisisse le parcours C.

On sait que A, B et C forment une partition

D'où
$$p(C) = 1 - p(A) - p(B) = 1 - 0, 2 - 0, 3 = 0, 5$$

Donc la probabilité que Pierre choisisse le parcours C est de 0,5

4. Déterminer la probabilité que Pierre choisisse le parcours A et une séance de vitesse.

Comme on cherche la probabilité que Pierre choisisse le parcours A et une séance de vitesse, il faut calculer $p(A \cap V)$

D'où
$$p(A \cap V) = p(A) \times p_A(V) = 0, 3 \times 0, 6 = 0, 18.$$

Donc
$$p(A \cap V) = 0.18$$

5. On sait que p(E) = 0.7. Montrer que : $p(E \cap C) = 0.42$.

On sait que A, B et C forment une partition

D'après la loi des probabilités totales on a :

$$p(E) = p(A \cap E) + p(B \cap E) + p(C \cap E)$$

$$p(\mathsf{C}\cap\mathsf{E}) = p(\mathsf{E}) - p(\mathsf{A}\cap\mathsf{E}) - p(\mathsf{B}\cap\mathsf{E}) = 0, 7 - 0, 3 \times 0, 4 - 0, 2 \times 0, 8 = 0, 7 - 0, 12 - 0, 16 = 0, 42.$$

Donc
$$p(E \cap C) = 0.42$$

6. On sait que Pierre a choisi le parcours C. Quelle est la probabilité qu'il fasse une séance d'endurance?

II faut trouver
$$p_{C}(E) = \frac{p(C \cap E)}{p(C)} = \frac{0.42}{0.5} = 0.84$$
.

Donc sachant que Pierre a choisi le parcours C, la probabilité qu'il fasse une séance d'endurance est de $\boxed{0.84}$

Exercice 2.

L'objet de cet exercice est d'étudier la suite (u_n) définie par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n}{1 + u_n} \text{ pour tout entier naturel } n \end{cases}$$

On utilisera pour cela la suite (v_n) définie par $v_n = \frac{1}{u_n}$.

1. En utilisant la calculatrice, compléter le tableau ci-dessous avec les premiers termes de (u_n) et (v_n) . On arrondira les résultats 10^{-3} près.

n	0	1	2	3
u_n	2	0,667	0,4	0,286
v_n	0,5	1,5	2,5	3,5

2. (a) Justifier que (u_n) n'est ni arithmétique, ni géométrique.

Comme $u_1 - u_0 \neq u_2 - u_1$ donc (u_n) n'est pas arithmétique.

Comme $\frac{u_1}{u_0} \neq \frac{u_2}{u_1}$ donc (u_n) n'est pas géométrique.

Donc la suite (u_n) n'est ni arithmétique, ni géométrique.

(b) Quel semble être le comportement de la suite (u_n) ?

La suite (u_n) semble décroissante.

(c) Quelle semble être la nature de (v_n) ?

La suite (v_n) semble arithmétique de raison 1.

3. Démontrer par récurrence que les termes de la suite (u_n) sont strictement positifs.

On note pour tout $n \in \mathbb{N}$, la propriété \mathscr{P}_n : $u_n > 0$.

- **Initialistion.** Comme $u_0 = 2 > 0$ donc \mathcal{P}_0 est vraie.
- **Hérédité.** Supposons pour un certain $k \in \mathbb{N}$ la propriété \mathscr{P}_k est vraie, c'est à dire que $u_k > 0$.

Alors
$$u_k+1>u_k>0$$
 alors $\frac{u_k}{1+u_k}>0$ donc $u_{k+1}>0$
Donc $\mathscr{P}_k\Rightarrow \mathscr{P}_{k+1}$.

• Conclusion. Par initialisation et hérédité, la propriété \mathscr{P}_n est vérifiée pour tout n donc pour tout $n \in \mathbb{N}$, $u_n > 0$.

(a) Etudier le sens de variation de (u_n) .

Soit $n \in \mathbb{N}$. On a $u_{n+1} - u_n = \frac{u_n}{1 + u_n} - u_n = u_n \left(\frac{1}{1 + u_n} - 1 \right) = u_n \left(\frac{1}{1 + u_n} - \frac{1 + u_n}{1 + u_n} \right) = u_n \left(\frac{1 - (1 + u_n)}{1 + u_n} \right) = \frac{-u_n^2}{1 + u_n}.$ Comme $u_n > 0$ alors $1 + u_n > 0$ et $u_n^2 > 0$ alors $\frac{-u_n^2}{1 + u_n} < 0$

Donc $u_{n+1} - u_n < 0$.

Ainsi la suite (u_n) est strictement décroissante.

(b) Justifier que (u_n) converge.

D'après les questions précédentes, on sait que (u_n) est strictement décroissante et minorée par 0

En appliquant le théorème convergence,

On en déduit cette suite (u_n) converge vers une limite $\ell \ge 0$.

5. Démontrer que (v_n) est une suite arithmétique.

On a
$$v_{n+1} = \frac{1}{u_{n+1}} = \frac{1}{\frac{u_n}{1+u_n}} = \frac{1+u_n}{u_n} = \frac{1}{u_n} + \frac{u_n}{u_n} = v_n + 1.$$

On en déduit que la suite (v_n) est arithmétique de raison 1.

6. En déduire l'expression de
$$v_n$$
 puis montrer que pour tout entier naturel n , $u_n = \frac{2}{1+2n}$.

D'après le 5., la suite (v_n) est arithmétique de raison 1.

Ainsi, pour tout $n \in \mathbb{N}$, $v_n = v_0 + n$ avec $v_0 = \frac{1}{u_0} = \frac{1}{2}$

D'où $v_n = \frac{1}{2} + n$.

Or pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{u_n}$ alors $u_n = \frac{1}{v_n} = \frac{1}{\frac{1}{2} + n} = \frac{1}{\frac{1+2n}{2}} = \frac{2}{1+2n}$ Donc pour tout $n \in \mathbb{N}$, $u_n = \frac{2}{1+2n}$

7. Déterminer la limite de u_n .

On sait que $\lim_{n \to +\infty} n = +\infty$ $\Rightarrow \lim_{n \to +\infty} 1 + 2n = +\infty \Rightarrow \lim_{n \to +\infty} \frac{2}{1 + 2n} = 0$ Donc $\lim_{n \to +\infty} u_n = 0$

8. (a) Compléter l'algorithme suivant pour qu'il affiche n tel que $u_n < 10^{-2}$.

Variables : n est un entier naturel

u est un réel.

Initialisations : Affecter à u la valeur 2

Affecter à n la valeur 0

Traitement : Tant que $u \ge 10^{-6}$

Affecter à u la valeur $\frac{u}{1+u}$

Affecter à n la valeur n+1.

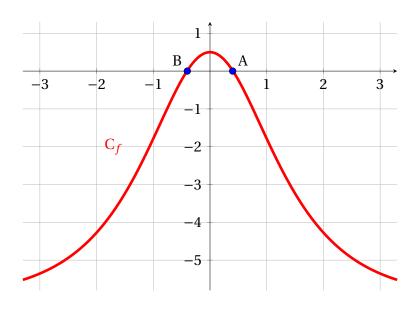
Sortie : Afficher n.

(b) Déterminer le plus petit entier n_0 tel que pour tout $n \ge n_0$, on a $u_n < 10^{-2}$.

D'après la calculatrice, on obtient $u_{99} \approx 0,01005$ et $u_{100} \approx 0,00995$ donc $n_0 = 100$.

Exercice 3. Soit f la fonction définie sur \mathbb{R} par $f(x) = -6 + \frac{13e^x}{e^{2x} + 1}$. On note \mathscr{C} sa courbe représentative dans un repère orthogonal $(0, \vec{i}, \vec{j})$.

Sur le graphique ci-dessous on a tracé la courbe \mathscr{C} . Elle coupe l'axe des abscisses aux points A et B (admis).



Les questions 1. et 2. sont indépendantes.

 $f'(x) = \frac{13e^x (1 - e^{2x})}{(e^{2x} + 1)^2}.$ (a) Vérifier que pour tout réel x,

> La fonction exponentielle est définie et dérivable sur ℝ et ne prend que des valeurs strictement positives, alors la fonction $x \longmapsto e^{2x} + 1$ est dérivable et ne s'annule pas sur \mathbb{R} .

Donc f est dérivable sur \mathbb{R}

On a
$$f = -6 + \frac{u}{v}$$
 et $f' = \frac{u'v - v'u}{v^2}$ avec $u(x) = 13e^x$ et $u'(x) = 13e^x$ $v(x) = e^{2x} + 1$ et $v'(x) = 2e^{2x}$

Soit
$$x \in \mathbb{R}$$
, $f'(x) = \frac{13e^x (e^{2x} + 1) - 2e^{2x} \times 13e^x}{(e^{2x} + 1)^2} = \frac{13e^x (e^{2x} + 1 - 2e^{2x})}{(e^{2x} + 1)^2} = \frac{13e^x (1 - e^{2x})}{(e^{2x} + 1)^2}$

Donc Pour tout réel x , $f'(x) = \frac{13e^x (1 - e^{2x})}{(e^{2x} + 1)^2}$

Donc Pour tout réel
$$x$$
, $f'(x) = \frac{13e^x(1-e^{2x})}{(e^{2x}+1)^2}$

(b) Étudier les variations de la fonction f sur $]-\infty$; $+\infty$ [.

Pour tout réel X, on sait $e^X > 0$ pour tout réel x, $13e^x > 0$ et $\left(e^{2x} + 1\right)^2 > 0$ D'où $\frac{13e^x}{(e^{2x}+1)^2} > 0$

Alors f'(x) est du même signe que $(1 - e^{2x})$.

De plus $1 - e^{2x} \ge 0 \iff e^0 \ge e^{2x} \iff 0 \ge 2x \iff 0 \ge x$ car la fonction exponentielle est strictement croissante sur \mathbb{R} .

x	$-\infty$		0		∞
signe de $1 - e^{2x}$		+	0	_	
signe de $f'(x)$		+	0	_	
variations de f			$\frac{1}{2}$		

Et
$$f(0) = -6 + \frac{13e^0}{e^{2 \times 0} + 1} = -6 + \frac{13}{2} = \frac{1}{2}$$

Donc la fonction f est croissante sur $]-\infty;0]$ puis déccroissante sur $[0;+\infty[$

- (c) Justifier que pour tout réel x, $-6 < f(x) \le \frac{1}{2}$.
 - D'après le 1.(b), on constate que la fonction f admet un maximum en 0 qui vaut $\frac{1}{2}$ Alors pour tout $x \in \mathbb{R}$, $f(x) \le \frac{1}{2}$.
 - De plus $f(x) = -6 + \frac{13e^x}{e^{2x} + 1}$

Or pour tout $x \in \mathbb{R}$: $13e^x > 0$ et $e^{2x} + 1 \ge 1 > 0$ d'où $\frac{13e^x}{e^{2x} + 1} > 0$ D'où $-6 + \frac{13e^x}{e^{2x} + 1} > -6$ c'est à dire f(x) > -6Donc pour tout réel $x, -6 < f(x) \le \frac{1}{2}$.

(d) Montrer que $\mathscr C$ admet une unique tangente horizontale en un point S dont on précisera les coordonnées.

On sait que $\mathscr C$ admet une tangente horizontale en $t \in \mathbb R$ si et seulement si f'(t) = 0

Or pour tout
$$t \in \mathbb{R}$$
, $e^t > 0$ et $e^{2t} + 1 > 0$.
Ainsi $f'(t) = 0 \Leftrightarrow \frac{13e^t \left(1 - e^{2t}\right)}{\left(e^{2t} + 1\right)^2} \Leftrightarrow 1 - e^{2t} = 0 \Leftrightarrow e^{2t} = 1 \Leftrightarrow e^{2t} = e^0 \Leftrightarrow t = 0$

Et
$$f(0) = -6 + \frac{13e^0}{e^{2\times 0} + 1} = -6 + \frac{13}{2} = \frac{1}{2}$$

Donc \mathscr{C} admet une unique tangente horizontale en un point $S\left(0;\frac{1}{2}\right)$

- 2. On désigne par a l'abscisse du point A, par b l'abscisse du point B et on pose $s=\mathrm{e}^a$ et $t=\mathrm{e}^b$, par définition a>b.
 - (a) Résoudre l'équation $6X^2 13X + 6 = 0$.

On résoud
$$6X^2 - 13X + 6 = 0$$
.
On a $\Delta = 25$ et $X_1 = \frac{2}{3}$ et $X_2 = \frac{3}{2}$.
Sonc $S = \left\{\frac{2}{3}, \frac{3}{2}\right\}$

(b) Démontrer que s est une solution de l'équation $6X^2 - 13X + 6 = 0$. On admettra que t est aussi solution de cette équation.

On sait que la courbe $\mathscr C$ coupe l'axe des abscisses aux points A et B

et que a désigne l'ascisse du point A

Donc a est une solution de l'équation f(t) = 0.

Comme
$$f(a) = 0$$
,

alors
$$-6 + \frac{13e^a}{e^{2a} + 1} = 0$$
 $\Rightarrow \frac{13e^a}{e^{2a} + 1} = 6$ $\Rightarrow 13e^a = 6(e^{2a} + 1)$
 $\Rightarrow 13e^a - 6e^{2a} - 6 = 0$ et comme $s = e^a$
 $\Rightarrow 13s - 6s^2 - 6 = 0$ $\Rightarrow 6s^2 - 13s + 6 = 0$

Donc s est une solution de l'équation $6X^2 - 13X + 6 = 0$

(c) En déduire les valeurs de s et t.

On sait des questions précédentes que :

- l'équation $6X^2 13X + 6 = 0$ admet deux solutions $\frac{2}{3}$ et $\frac{3}{2}$
- s et t sont solution de l'équation $6X^2 13X + 6 = 0$

De plus b < a alors $e^b < e^a$ puisque la fonction exponentielle est strictement croissante

C'est à dire
$$t < s$$
 puisque $t = e^b$ et $s = e^a$

Donc
$$t = \frac{2}{3}$$
 et $s = \frac{3}{2}$.

(d) Justifier que a = -b.

On sait que
$$s = \frac{3}{2}$$
 et $t = \frac{2}{3}$ alors $e^a = \frac{3}{2}$ et $e^b = \frac{2}{3}$

Alors
$$e^b = \frac{2}{3} = \frac{1}{\frac{3}{2}} = \frac{1}{e^a} = e^{-a}$$

Donc
$$b = -a$$
.

On pouvait aussi résonner sur la parité de f.

Comme f est définie sur $\mathbb R$ avec l'intervalle est bien centré en zéro

De plus pour tout $x \in \mathbb{R}$,

$$f(-x) = -6 + \frac{13e^{-x}}{e^{-2x} + 1} = -6 + \frac{13\frac{1}{e^x}}{\frac{1}{e^{2x}} + 1} = -6 + \frac{\frac{13}{e^x}}{\frac{1}{e^{2x}}} = -6 + \frac{\frac{13e^{2x}}{e^x}}{1 + e^{2x}} = -6 + \frac{13e^x}{1 + e^{2x}} = -6 + \frac{13e^x}{1 + e^{2x}} = f(x)$$

La fonction f est paire sur \mathbb{R} , on peut alors conclure que $\boxed{\mathtt{a} = -\mathtt{b}}$