

DS 4 - 29 JANVIER 2018

Durée : 55 min					SANS Calculatrice			
NOM:	Prénom :							
Bilan	Prés.	Ex 1	Ex 2	Ex 3	Ex 4	Ex 5	Ex 6	
/ 20	/1	/3	/ 4,5	/3	/ 4,5	/2	/3	

COMPETENCES	<u>E</u> Maîtrise insuffisante	<u>D</u> Début de maîtrise	<u>C</u> Maîtrise fragile	<u>B</u> Presque maîtrisé	A Maîtrise satisfaisante
CALCULER - 5.1					
CHERCHER - 1.4					
RAISONNER - 4.3					
REPRESENTER - 3.1					
COMMUNIQUER - 6.2					

Exercice 1 - 3 points - (sur la copie)

On donne $a = \frac{5}{4}$ et $b = -\frac{8}{3}$. Effectuer les calculs demandés, <u>en détaillant les étapes</u>, donner le résultat sous la forme d'une fraction irréductible.

$$S = a + b$$

$$D = a - b$$

$$M = a \times b$$

$$Q = \frac{a}{b}$$

Exercice 2 - 4,5 points - (sur la copie)

Calculer les expressions numériques suivantes, <u>en détaillant les étapes</u>, et donner le résultat sous la forme la plus simple possible :

$$A = \frac{7}{5} - \frac{7}{3} \times \frac{15}{14}$$

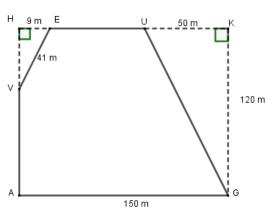
$$B = \frac{8}{5} - \frac{3}{4} \div \frac{9}{8}$$

$$C = \frac{\frac{8}{3} - \frac{2}{5}}{\frac{7}{5}}$$

Exercice 3 - 3 points - (sur la copie)

Bernard, Bianca et Penny se partagent un paquet de bonbons. Bernard se sert le premier, il prend $\frac{3}{5}$ des bonbons contenus dans le paquet. Bianca prend $\frac{1}{3}$ de ce qu'a laissé Bernard. Penny vide le paquet.

- 1) Quelle proportion de bonbons Bianca a-t-elle prit?
- 2) Quelle proportion de bonbons reste-t-il à Penny?
- 3) Sachant qu'il y avait 75 bonbons dans le paquet, combien de bonbons chaque enfant a-t-il pris ?

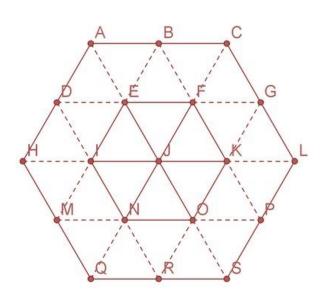

Exercice 4 - 4,5 points - (sur la copie)

Bernard a un terrain qu'il souhaite clôturer.

- 1) Calculer la longueur du segment [GU].
- 2) Calculer la longueur du segment [VH].
- 3) Calculer le périmètre du terrain VAGUE au mètre prés. Quelle la longueur de clôture Bernard doit-il acheter ?

Pour info:

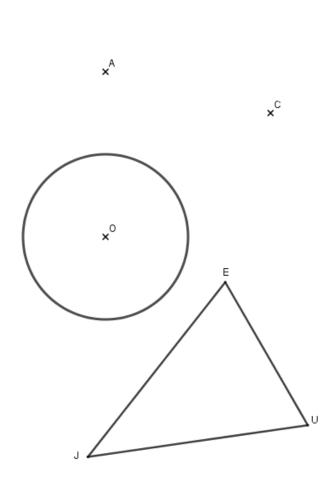
$$50^2 = 2500$$
 $120^2 = 14400$
 $9^2 = 81$ $41^2 = 1681$
 $\sqrt{16900} = 130$ $\sqrt{11900} \approx 109$
 $\sqrt{1600} = 40$ $\sqrt{1762} \approx 42$


$$HE = 9 m$$
 $UK = 50m$
 $VE = 41 m$ $GK = 120 m$

Exercice 5 - 2 points - (sur l'énoncé)

Dans la figure ci-dessous les triangles sont équilatéraux.

Entourer la bonne réponse :


Par la translation qui transforme H en I , quelle est l'image du triangle ABE ?	DIE	BCF	EFJ
Par la translation qui transforme H en M , quelle est l'image du triangle ABE ?	EFJ	JKO	OPS
L'image du triangle <i>ONR</i> par la rotation de centre <i>O</i> et d'angle 60°.	OKJ	ORS	OSP
L'image du triangle <i>IJE</i> par la rotation de centre <i>J</i> et d'angle 120°.	KJO	NJI	OJN

Exercice 6 - 3 points - (sur l'énoncé)

- 1) Construire, en laissant les traits de construction, l'image du cercle de centre 0 par la translation qui transforme A en B
- 2) Construire, <u>en laissant les traits de construction</u>, l'image du triangle JEU par la rotation de centre C et d'angle 60° dans le sens antihoraire.

xB

DS 4 - 29 JANVIER 2018

Durée : 55 min SANS Calculatrice

Exercice 1 - 3 points - (sur la copie)

On donne $a = \frac{5}{4}$ et $b = -\frac{8}{3}$. Effectuer les calculs demandés, <u>en détaillant les étapes</u>, donner le résultat sous la forme d'une fraction irréductible.

$$S = a + b \qquad D = a - b \qquad M = a \times b \qquad Q = \frac{a}{b}$$

$$S = \frac{5}{4} + \left(-\frac{8}{3}\right) \qquad D = \frac{5}{4} - \left(-\frac{8}{3}\right) \qquad M = \frac{5}{4} \times \left(-\frac{8}{3}\right) \qquad Q = \frac{\frac{5}{4}}{\left(-\frac{8}{3}\right)} \qquad Q = \frac{\frac{5}{4}}{\left$$

Exercice 2 - 4,5 points - (sur la copie)

Calculer les expressions numériques suivantes, <u>en détaillant les étapes</u>, et donner le résultat sous la forme la plus simple possible :

$$A = \frac{7}{5} - \frac{7}{3} \times \frac{15}{14}$$

$$B = \frac{8}{5} - \frac{3}{4} \div \frac{9}{8}$$

$$C = \frac{\frac{8}{3} - \frac{2}{5}}{\frac{7}{5}}$$

$$A = \frac{7}{5} - \frac{7 \times 15}{3 \times 14}$$

$$B = \frac{8}{5} - \frac{3}{4} \times \frac{8}{9}$$

$$A = \frac{7}{5} - \frac{7 \times 3 \times 5}{3 \times 2 \times 7}$$

$$A = \frac{7}{5} - \frac{5}{2}$$

$$A = \frac{8}{5} - \frac{3 \times 8}{4 \times 9}$$

$$A = \frac{7 \times 2}{5 \times 2} - \frac{5 \times 5}{2 \times 5}$$

$$A = \frac{14}{10} - \frac{25}{10}$$

$$A = \frac{14 - 25}{10}$$

$$A = \frac{(-11)}{10}$$

$$B = \frac{24}{15} - \frac{10}{15}$$

$$B = \frac{24 - 10}{15}$$

$$C = \frac{34 \times 5}{3 \times 5 \times 7}$$

$$C = \frac{34}{3 \times 7}$$

$$C = \frac{34}{3 \times 7}$$

$$C = \frac{34}{21}$$

Exercice 3 - 3 points -

(sur la copie)

Bernard, Bianca et Penny se partagent un paquet de bonbons.

Bernard se sert le première, il prend $\frac{3}{5}$ des bonbons contenus dans le paquet.

Bianca prend $\frac{1}{2}$ de ce qu'a laissé Bernard. Penny vide le paquet.

1) Quelle proportion de bonbons Bianca a-t-elle pris?

Bernard prend $\frac{3}{5}$ des bonbons contenus dans le paquet.

Alors il reste $\frac{2}{5}$ du paquet pour les filles car $1 - \frac{3}{5} = \frac{5}{5} - \frac{3}{5} = \frac{2}{5}$

car
$$1 - \frac{3}{5} = \frac{5}{5} - \frac{3}{5} = \frac{2}{5}$$

Bianca prend $\frac{1}{3}$ des bonbons qui restent donc des $\frac{2}{5}$ du paquet

<u>Alors</u> $\frac{1}{3} \times \frac{2}{5} = \frac{1 \times 2}{3 \times 5} = \frac{2}{15}$

<u>Donc</u> Bianca prend les $\frac{2}{15}$ des bonbons contenus dans le paquet.

2) Quelle proportion de bonbons reste-t-il à Penny?

Bernard a pris $\frac{3}{5}$ du paquet, Bianca les $\frac{2}{15}$ du paquet

car
$$\frac{3}{5} + \frac{2}{15} = \frac{3 \times 3}{5 \times 3} + \frac{2}{15} = \frac{9}{15} + \frac{2}{15} = \frac{11}{15}$$

Alors à eux deux ils ont pris $\frac{11}{15}$ car $\frac{3}{5} + \frac{2}{15} = \frac{3 \times 3}{5 \times 3} + \frac{2}{15} = \frac{9}{15} + \frac{2}{15} = \frac{11}{15}$ Donc la proportion de bonbons qui reste à Penny est de $\frac{4}{15}$ car $1 - \frac{11}{15} = \frac{15}{15} - \frac{11}{15} = \frac{15-11}{15} = \frac{4}{15}$

car
$$1 - \frac{11}{15} = \frac{15}{15} - \frac{11}{15} = \frac{15-11}{15} = \frac{4}{15}$$

3) Sachant qu'il y avait 75 bonbons dans le paquet, combien de bonbons chaque enfant a-t-il pris? Bernard a pris $\frac{3}{5}$ du paquet alors $\frac{3}{5} \times 75 = \frac{3 \times 5 \times 15}{5} = 3 \times 15 = 45$ Bianca a pris $\frac{2}{15}$ du paquet alors $\frac{2}{15} \times 75 = \frac{2 \times 5 \times 15}{15} = 2 \times 5 = 10$ Penny a pris $\frac{4}{15}$ du paquet alors $\frac{4}{15} \times 75 = \frac{4 \times 5 \times 15}{15} = 4 \times 5 = 20$ Donc Bernard a pris 45 bonbons, Bianca a pris 10 bonbons et Penny a pris 20 bonbons.

alors
$$\frac{3}{5} \times 75 = \frac{3 \times 5 \times 15}{5} = 3 \times 15 = 45$$

alors
$$\frac{2}{15} \times 75 = \frac{2 \times 5 \times 15}{15} = 2 \times 5 = 10$$

alors
$$\frac{\frac{4}{15}}{15} \times 75 = \frac{4 \times 5 \times 15}{15} = 4 \times 5 = 20$$

(sur la copie) Exercice 4 - 4,5 points -Bernard a un terrain qu'il souhaite clôturer.

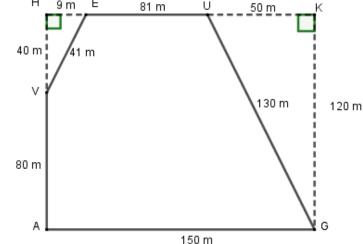
1) Calculer la longueur du segment [GU]. On sait que le triangle GUK est rectangle en K

D'après le théorème de Pythagore

On obtient:

$$GU^{2} = KG^{2} + KU^{2}$$

$$GU^{2} = 120^{2} + 50^{2}$$


$$GU^{2} = 14400 + 35$$

$$GU^2 = 14\,400 + 2\,500$$

$$GU^2 = 16900$$

$$GU = \sqrt{16900} = 130$$

Donc GU = 130 m

2) Calculer la longueur du segment [VH].

On sait que le triangle VHE est rectangle en H D'après le théorème de Pythagore

On obtient:

$$VE^2 = HE^2 + VH^2$$

 $41^2 = 9^2 + VH^2$

$$1681 = 81 + VH^2$$

$$VH^2 = 1681 - 81$$

$$VH^2=1\,600$$

$$VH = \sqrt{1600} = 40$$

Donc VH = 40 m

Pour info:

$$50^2 = 2500$$

$$120^2 = 14\,400$$

$$9^2 = 81$$

$$\sqrt{16\,900} = 130$$

$$41^2 = 1681$$

$$\sqrt{1600} = 40$$

$$\sqrt{11\ 900} \approx 109$$
 $\sqrt{1\ 762} \approx 42$

3) Calculer le périmètre du terrain VAGUE au mètre prés. Quelle la longueur de clôture Bernard doit-il acheter ?

On cherche le périmètre du terrain VAGUE : $P_{VAGUE} = VA + AG + GU + UE + EV$

• les points *H*, *V* et *A* sont alignés

d'où VA = HA - HV = 120 - 40 = 80

• les points H, E, U et K sont alignés

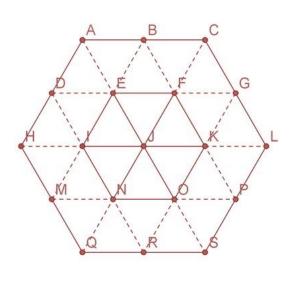
d'où EU = HK - HE - UK = 150 - 9 - 50 = 100 - 9 = 81

 $\underline{\mathsf{Alors}} \quad P_{VAGUE} = VA + AG + GU + UE + EV$

 $P_{VAGUE} = 80 + 150 + 130 + 81 + 41$

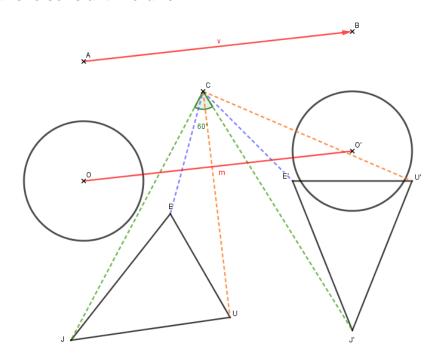
 $P_{VAGUE} = 482$

Donc $P_{VAGUE} = 482$


D'où Bernard doit acheter 482 m de clôture

<u>Exercice 5</u> - 2 points - (sur l'énoncé)

Dans la figure ci-dessous les triangles sont équilatéraux.


Entourer la bonne réponse :

Par la translation qui transforme <i>H</i> en <i>I</i> , quelle est l'image du triangle <i>ABE</i> ?	DIE	BCF	EFJ
Par la translation qui transforme <i>H</i> en <i>M</i> , quelle est l'image du triangle <i>ABE</i> ?	EFJ	JKO	OPS
L'image du triangle <i>ONR</i> par la rotation de centre <i>O</i> et d'angle 60°.	OKJ	ORS	OSP
L'image du triangle IJE par la rotation de centre J et d'angle 120° .	KJO	NJI	OJN

Exercice 6 - 3 points - (sur l'énoncé)

- 1) Construire, en laissant les traits de construction, l'image du cercle de centre ${\it O}$ par la translation qui transforme ${\it A}$ en ${\it B}$
- 2) Construire, en laissant les traits de construction, l'image du triangle JEU par la rotation de centre C et d'angle 60° dans le sens anti-horaire.

